TRAINING_EXAMPLES.mdā¢2.92 kB
# Training Module - Quick Start Examples
## What's New
Your MCP server now has:
1. ā
**Automatic Scoring** - All tests save success/failure with scores (0-10)
2. ā
**Training Data Storage** - Learn from HTB and PortSwigger
3. ā
**Pattern Matching** - Match current tests against learned patterns
4. ā
**Statistics** - Track success rates and patterns
## New Tools Available
### Database Tools
- `db.get_test_results` - Get test results with scores
- `db.get_statistics` - View test statistics
### Training Tools
- `training.import` - Import training data
- `training.import_portswigger` - Import PortSwigger lab solutions
- `training.import_htb` - Import HTB challenge solutions
- `training.get` - Retrieve training data
- `training.match` - Match patterns against learned data
- `training.stats` - Get training statistics
## Example: Import PortSwigger XSS Lab
```json
{
"tool": "training.import_portswigger",
"params": {
"labName": "Reflected XSS",
"labUrl": "https://portswigger.net/web-security/cross-site-scripting/reflected/lab-html-context-nothing-encoded",
"vulnerabilityType": "XSS",
"solution": {
"payloads": [
"<script>alert(1)</script>",
"<img src=x onerror=alert(1)>"
],
"successPattern": "Congratulations",
"failurePattern": "Not solved",
"score": 7
}
}
}
```
## Example: Import HTB Challenge
```json
{
"tool": "training.import_htb",
"params": {
"challengeName": "BountyHunter",
"challengeUrl": "http://bountyhunter.htb",
"vulnerabilityType": "XXE",
"exploit": {
"payload": "<?xml version=\"1.0\"?><!DOCTYPE foo [<!ENTITY xxe SYSTEM \"file:///etc/passwd\">]><foo>&xxe;</foo>",
"successPattern": "root:",
"failurePattern": "error",
"score": 8
}
}
}
```
## Example: Check Test Results
```json
{
"tool": "db.get_test_results",
"params": {
"testType": "xss_test",
"success": true,
"limit": 50
}
}
```
## Example: Match Patterns
```json
{
"tool": "training.match",
"params": {
"vulnerabilityType": "XSS",
"target": "https://example.com/search",
"payload": "<script>alert(1)</script>",
"response": "Congratulations, you solved the lab!"
}
}
```
## How It Works
1. **Import Training Data**: Add HTB/PortSwigger solutions
2. **Run Tests**: Tests automatically save with scores
3. **Pattern Learning**: System learns patterns from training data
4. **Match & Recommend**: Current tests are matched against learned patterns
## Scoring System
- **Critical (9-10)**: SQL Injection, Auth Bypass
- **High (7-8)**: XSS, IDOR
- **Medium (5-6)**: CSP issues, Info Disclosure
- **Low (3-4)**: Minor issues
- **Failed (0)**: Test failed or no vulnerability found
## Minimal LLM Approach
Instead of large models, we use:
- Pattern matching (string/regex)
- Statistical learning
- Rule-based systems
- No API costs, all local!