Skip to main content
Glama

Tecton MCP Server

Official
by tecton-ai
meta.py967 B
import json import os from tecton_mcp.constants import FILE_DIR from typing import Any, Dict DATA_DIR = os.path.join(FILE_DIR, "data") META_PATH = os.path.join(DATA_DIR, "embeddings_meta.json") DEFAULT_MODEL = "jinaai/jina-embeddings-v2-base-code" def get_metadata() -> Dict[str, Any]: """Return metadata dict or empty dict if not found.""" try: with open(META_PATH, "r") as f: return json.load(f) except FileNotFoundError: return {} def get_embedding_model() -> str: """Return embedding model specified in metadata or default.""" return get_metadata().get("embedding_model", DEFAULT_MODEL) def write_metadata(embedding_model: str, tecton_version: str): """Write metadata json to disk.""" os.makedirs(DATA_DIR, exist_ok=True) meta = { "embedding_model": embedding_model, "tecton_version": tecton_version, } with open(META_PATH, "w") as f: json.dump(meta, f, indent=2)

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/tecton-ai/tecton-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server