BigQuery MCP Server

by takuya0206
Verified

hybrid server

The server is able to function both locally and remotely, depending on the configuration or use case.

Integrations

  • Enables interaction with Google BigQuery to execute read-only SQL queries, list datasets and tables, inspect table schemas, retrieve sample data, and estimate query costs, allowing AI agents to analyze data stored in BigQuery.

BigQuery MCP Server

A Model Context Protocol (MCP) server for accessing Google BigQuery. This server enables Large Language Models (LLMs) to understand BigQuery dataset structures and execute SQL queries.

Features

Authentication and Connection Management

  • Supports Application Default Credentials (ADC) or service account key files
  • Configurable project ID and location settings
  • Authentication verification on startup

Tools

  1. query
    • Execute read-only (SELECT) BigQuery SQL queries
    • Configurable maximum results and bytes billed
    • Security checks to prevent non-SELECT queries
  2. list_all_datasets
    • List all datasets in the project
    • Returns an array of dataset IDs
  3. list_all_tables_with_dataset
    • List all tables in a specific dataset with their schemas
    • Requires a datasetId parameter
    • Returns table IDs, schemas, time partitioning information, and descriptions
  4. get_table_information
    • Get table schema and sample data (up to 20 rows)
    • Support for partitioned tables with partition filters
    • Warnings for queries on partitioned tables without filters
  5. dry_run_query
    • Check query validity and estimate cost without execution
    • Returns processing size and estimated cost

Security Features

  • Only SELECT queries are allowed (read-only access)
  • Default limit of 500GB for query processing to prevent excessive costs
  • Partition filter recommendations for partitioned tables
  • Secure handling of authentication credentials

Installation

Local Installation

# Clone the repository git clone https://github.com/yourusername/bigquery-mcp-server.git cd bigquery-mcp-server # Install dependencies bun install # Build the server bun run build # Install command to your own path. cp dist/bigquery-mcp-server /path/to/your_place

Docker Installation

You can also run the server in a Docker container:

# Build the Docker image docker build -t bigquery-mcp-server . # Run the container docker run -it --rm \ bigquery-mcp-server \ --project-id=your-project-id

Or using Docker Compose:

# Edit docker-compose.yml to set your project ID and other options # Then run: docker-compose up

MCP Configuration

To use this server with an MCP-enabled LLM, add it to your MCP configuration:

{ "mcpServers": { "BigQuery": { "command": "/path/to/dist/bigquery-mcp-server", "args": [ "--project-id", "your-project-id", "--location", "asia-northeast1", "--max-results", "1000", "--max-bytes-billed", "500000000000" ], "env": { "GOOGLE_APPLICATION_CREDENTIALS": "/path/to/service-account-key.json" } } } }

You can also use Application Default Credentials instead of a service account key file:

{ "mcpServers": { "BigQuery": { "command": "/path/to/dist/bigquery-mcp-server", "args": [ "--project-id", "your-project-id", "--location", "asia-northeast1", "--max-results", "1000", "--max-bytes-billed", "500000000000" ] } } }

Setting up Application Default Credentials

To authenticate using Application Default Credentials:

  1. Install the Google Cloud SDK if you haven't already:
    # For macOS brew install --cask google-cloud-sdk # For other platforms, see: https://cloud.google.com/sdk/docs/install
  2. Run the authentication command:
    gcloud auth application-default login
  3. Follow the prompts to log in with your Google account that has access to the BigQuery project.
  4. The credentials will be saved to your local machine and automatically used by the BigQuery MCP server.

Testing

You can use inspector for testing and debugging.

npx @modelcontextprotocol/inspector dist/bigquery-mcp-server --project-id={{your_own_project}}

Usage

Using the Helper Script

The included run-server.sh script makes it easy to start the server with common configurations:

# Make the script executable chmod +x run-server.sh # Run with Application Default Credentials ./run-server.sh --project-id=your-project-id # Run with a service account key file ./run-server.sh \ --project-id=your-project-id \ --location=asia-northeast1 \ --key-file=/path/to/service-account-key.json \ --max-results=1000 \ --max-bytes-billed=500000000000

Manual Execution

You can also run the compiled binary directly:

# Run with Application Default Credentials ./dist/bigquery-mcp-server --project-id=your-project-id # Run with a service account key file ./dist/bigquery-mcp-server \ --project-id=your-project-id \ --location=asia-northeast1 \ --key-file=/path/to/service-account-key.json \ --max-results=1000 \ --max-bytes-billed=500000000000

Example Client

An example Node.js client is included in the examples directory:

# Make the example executable chmod +x examples/sample-query.js # Edit the example to set your project ID # Then run it cd examples ./sample-query.js

Command Line Options

  • --project-id: Google Cloud project ID (required)
  • --location: BigQuery location (default: asia-northeast1)
  • --key-file: Path to service account key file (optional)
  • --max-results: Maximum rows to return (default: 1000)
  • --max-bytes-billed: Maximum bytes to process (default: 500000000000, 500GB)

Required Permissions

The service account or user credentials should have one of the following:

  • roles/bigquery.user (recommended)

Or both of these:

  • roles/bigquery.dataViewer (for reading table data)
  • roles/bigquery.jobUser (for executing queries)

Example Usage

Query Tool

{ "query": "SELECT * FROM `project.dataset.table` LIMIT 10", "maxResults": 100 }

List All Datasets Tool

// No parameters required

List All Tables With Dataset Tool

{ "datasetId": "your_dataset" }

Get Table Information Tool

{ "datasetId": "your_dataset", "tableId": "your_table", "partition": "20250101" }

Dry Run Query Tool

{ "query": "SELECT * FROM `project.dataset.table` WHERE date = '2025-01-01'" }

Error Handling

The server provides detailed error messages for:

  • Authentication failures
  • Permission issues
  • Invalid queries
  • Missing partition filters
  • Excessive data processing requests

Code Structure

The server is organized into the following structure:

src/ ├── index.ts # Entry point ├── server.ts # BigQueryMcpServer class ├── types.ts # Type definitions ├── tools/ # Tool implementations │ ├── query.ts # query tool │ ├── list-datasets.ts # list_all_datasets tool │ ├── list-tables.ts # list_all_tables_with_dataset tool │ ├── table-info.ts # get_table_information tool │ └── dry-run.ts # dry_run_query tool └── utils/ # Utility functions ├── args-parser.ts # Command line argument parser └── query-utils.ts # Query validation and response formatting

License

MIT