Skip to main content
Glama

AlphaGenome MCP Server

by taehojo
MIT License
README.md6.95 kB
# AlphaGenome MCP Server [![npm version](https://badge.fury.io/js/%40jolab%2Falphagenome-mcp.svg)](https://www.npmjs.com/package/@jolab/alphagenome-mcp) [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT) An MCP server that provides natural language access to Google DeepMind's AlphaGenome for regulatory genomics analysis and variant effect prediction. ## Features - **Variant Effect Prediction**: Analyze regulatory impacts of genetic variants across 11 molecular modalities (RNA-seq, ChIP-seq, ATAC-seq, splicing, etc.) - **Regulatory Element Discovery**: Identify promoters, enhancers, and transcription factor binding sites in genomic regions - **Batch Variant Scoring**: Prioritize multiple variants by regulatory impact for GWAS and sequencing studies - **Natural Language Interface**: Query variants using rsIDs or genomic coordinates without coding - **Multi-Modal Analysis**: Unified predictions for gene expression, chromatin accessibility, TF binding, and 3D chromatin structure ## Tools ### predict_variant_effect Predicts the regulatory impact of a single genetic variant. **Inputs:** - `chromosome` (string): Chromosome name (chr1-chr22, chrX, chrY) - `position` (number): Genomic position (1-based) - `ref` (string): Reference allele (A/T/G/C) - `alt` (string): Alternate allele (A/T/G/C) - `tissue_type` (string, optional): Tissue context (UBERON term, e.g., "UBERON:0000955" for brain) - `output_types` (array, optional): Specific modalities to analyze **Example:** ``` "Analyze the regulatory impact of chr19:44908684T>C in brain tissue" ``` ### analyze_region Identifies regulatory elements in a genomic region. **Inputs:** - `chromosome` (string): Chromosome name - `start` (number): Start position (1-based) - `end` (number): End position - `analysis_types` (array, optional): Element types to find (promoter, enhancer, etc.) - `resolution` (string, optional): "base" (1bp) or "window" (128bp) **Example:** ``` "Find enhancers in chr11:5225464-5227071" ``` ### batch_score_variants Scores and ranks multiple variants by regulatory impact. **Inputs:** - `variants` (array): List of variants with chr, pos, ref, alt - `scoring_metric` (string): Metric for ranking (rna_seq, splice, regulatory_impact, combined) - `top_n` (number, optional): Number of top variants to return - `include_interpretation` (boolean, optional): Include clinical interpretation **Example:** ``` "Score these variants by splicing impact: chr7:117199563C>T, chr2:127892810G>A" ``` ## Installation ### Requirements - Node.js ≥18.0.0 - Python ≥3.8 with `alphagenome` and `numpy` - AlphaGenome API key ([request here](https://deepmind.google/discover/blog/alphagenome/)) ### Quick Start ```bash # Install Python dependencies pip install alphagenome numpy # Add to Claude Desktop claude mcp add alphagenome -- npx -y @jolab/alphagenome-mcp@latest --api-key YOUR_API_KEY ``` ## Configuration ### Usage with Claude Desktop Add to your `claude_desktop_config.json`: ```json { "mcpServers": { "alphagenome": { "command": "npx", "args": ["-y", "@jolab/alphagenome-mcp@latest"], "env": { "ALPHAGENOME_API_KEY": "your-api-key-here" } } } } ``` Or use command-line argument: ```json { "mcpServers": { "alphagenome": { "command": "npx", "args": [ "-y", "@jolab/alphagenome-mcp@latest", "--api-key", "your-api-key-here" ] } } } ``` ### Verification Test the installation: ``` "Analyze chr19:44908684T>C with AlphaGenome" ``` Expected: Detailed regulatory impact report within 30-60 seconds. ## Usage Examples ### Basic Analysis **Single Variant:** ``` "What is the regulatory impact of rs429358?" ``` **Specific Tissue:** ``` "Analyze chr6:41129252C>T in brain tissue" ``` **Custom Modalities:** ``` "Show only RNA-seq and splicing effects for chr2:127892810G>A" ``` ### Advanced Queries **Region Exploration:** ``` "Find all regulatory elements in the APOE gene region" ``` **Variant Prioritization:** ``` "Rank these 10 variants by their impact on gene expression" ``` **Cross-Tissue Comparison:** ``` "Compare the effect of this variant in brain vs liver" ``` **Mechanistic Investigation:** ``` "Which transcription factors are affected by rs744373?" ``` ## Use Cases - **Post-GWAS Analysis**: Prioritize GWAS hits by functional impact - **Clinical Interpretation**: Assess pathogenicity of VUS (variants of uncertain significance) - **Drug Target Discovery**: Identify regulatory variants affecting target genes - **Synthetic Biology**: Design tissue-specific regulatory elements - **Evolutionary Genomics**: Analyze regulatory changes across species ## Development ### Build from Source ```bash git clone https://github.com/taehojo/alphagenome-mcp.git cd alphagenome-mcp npm install pip install -r requirements.txt npm run build ``` ### Project Structure ``` src/ ├── index.ts # MCP server ├── alphagenome-client.ts # API client ├── tools.ts # Tool definitions └── utils/ # Validation & formatting scripts/ └── alphagenome_bridge.py # Python bridge ``` ### Testing ```bash npm run lint npm run typecheck npm run build ``` ## Architecture ``` Claude Desktop → MCP Server (TypeScript) → Python Bridge → AlphaGenome API ``` The server uses a Python subprocess bridge to interface with AlphaGenome's Python-only SDK. ## Performance - **First call**: 30-60 seconds (initialization) - **Subsequent calls**: 5-15 seconds - **Recommended**: <1000 variants per session - **Modalities**: 11 (RNA-seq, CAGE, PRO-cap, splice sites, DNase, ATAC, histone mods, TF binding, contact maps) - **Resolution**: Single base-pair for most modalities ## Limitations - Requires active internet and API access - InDels and structural variants not fully supported - Accuracy decreases for regulatory elements >100kb from TSS - Human and mouse genomes only - Research use only (not validated for clinical diagnostics) ## Citation ```bibtex @software{jo2025alphagenome_mcp, author = {Jo, Taeho}, title = {AlphaGenome MCP Server}, year = {2025}, url = {https://github.com/taehojo/alphagenome-mcp}, version = {0.1.5} } ``` AlphaGenome: ```bibtex @article{avsec2025alphagenome, title = {AlphaGenome: Unified prediction of variant effects}, author = {Avsec, Žiga and Latysheva, Natasha and Cheng, Jun and others}, journal = {bioRxiv}, year = {2025}, doi = {10.1101/2025.06.27.600757} } ``` ## License MIT License - Copyright (c) 2025 Taeho Jo ## Links - **npm**: https://www.npmjs.com/package/@jolab/alphagenome-mcp - **GitHub**: https://github.com/taehojo/alphagenome-mcp - **Issues**: https://github.com/taehojo/alphagenome-mcp/issues - **AlphaGenome**: https://deepmind.google/discover/blog/alphagenome/ - **Model Context Protocol**: https://modelcontextprotocol.io/

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/taehojo/alphagenome-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server