Provides natural language access to Google DeepMind's AlphaGenome variant effect prediction API for analyzing genomic variants, assessing pathogenicity, predicting tissue-specific effects, and evaluating regulatory impacts across 11 molecular modalities including RNA-seq, ChIP-seq, ATAC-seq, and splicing.
AlphaGenome MCP Server
A Model Context Protocol (MCP) server that provides natural language access to Google DeepMind's AlphaGenome variant effect prediction API.
한국어 요약: Google DeepMind AlphaGenome API를 MCP 클라이언트(Claude Desktop, Claude Code, Gemini CLI, Cursor, Windsurf 등)에서 자연어로 사용할 수 있게 해주는 MCP 서버입니다. 유전체 변이의 조절 효과, 병원성, 조직별 영향을 분석할 수 있습니다. 한국어 전체 문서 보기
Overview
AlphaGenome MCP Server provides a natural language interface to Google DeepMind's AlphaGenome variant effect prediction API. Query genomic variants using plain English instead of writing Python code, designed for exploratory analysis and rapid prototyping.
Key Features:
Natural Language Interface: Query variants using plain English instead of writing code
Wrapper Architecture: 20 specialized tools built as wrappers around a single API endpoint
Comprehensive Analysis: Access all AlphaGenome modalities (RNA-seq, ChIP-seq, ATAC-seq, splicing, etc.)
Research Tool: Designed for exploratory genomics research and variant prioritization
⚡ Quick Start
Get started in 3 minutes:
Install dependencies
pip install alphagenome numpyAdd to your MCP client (supports Claude Desktop, Claude Code, Gemini CLI, Cursor, Windsurf)
claude mcp add alphagenome -- npx -y @jolab/alphagenome-mcp@latest --api-key YOUR_API_KEYSee Installation for other MCP clients.
Run your first query
Restart your MCP client and try:
"Use alphagenome to analyze chr19:44908684T>C"View results (takes 30-60 seconds)
You'll get a detailed report with pathogenicity scores, expression impacts, and splicing effects.
Want more? Check out 20 specialized tools below.
Architecture
System Design
AlphaGenome MCP Server implements a multi-tier architecture:
Wrapper Pattern
All 20 tools are lightweight wrappers around the same predict_variant() API endpoint. They differ only in parameter configuration and output formatting:
Benefits of Wrapper Architecture:
Single API implementation serves 20 different functions
Specialized outputs through parameter configuration
Easy maintenance (update once, all tools benefit)
Consistent interface across all tools
Input Validation
All inputs undergo validation before API submission:
Chromosomes: Pattern-matched for chr1-22, chrX, chrY
Positions: Validated as positive integers
Alleles: A/T/G/C nucleotide validation
Tissue types: UBERON ontology term validation
Invalid inputs return human-readable error messages, enabling conversational error recovery.
Available Tools
Core Analysis
predict_variant_effect
Full regulatory impact prediction across all 11 modalities.
assess_pathogenicity
Clinical pathogenicity scoring with evidence breakdown.
Result: Pathogenic (score: 1.0) with expression, splicing, and TF binding evidence.
Tissue-Specific Analysis
predict_tissue_specific
Compare variant effects across multiple tissues.
Result: Tissue-differential expression (brain: -0.23%, liver: +0.07%)
batch_tissue_comparison
Multi-variant × multi-tissue analysis.
Variant Comparison
compare_variants
Direct side-by-side comparison.
compare_alleles
Compare different mutations at the same position.
compare_protective_risk
Compare protective vs risk alleles.
compare_variants_same_gene
Rank variants within a gene.
Modality-Specific Analysis
predict_splice_impact
Splicing effects only.
predict_expression_impact
Gene expression changes only.
predict_tf_binding_impact
Transcription factor binding changes.
predict_chromatin_impact
Chromatin accessibility changes.
batch_modality_screen
Screen variants for specific effects.
Multiple Variant Processing
batch_score_variants
Rank multiple variants by regulatory impact.
analyze_gwas_locus
Fine-mapping and causal variant identification.
batch_pathogenicity_filter
Filter variants by pathogenicity threshold.
Regulatory Annotation
annotate_regulatory_context
Comprehensive regulatory context.
predict_allele_specific_effects
Allele-specific regulatory effects.
Clinical Reporting
generate_variant_report
Comprehensive clinical report.
explain_variant_impact
Human-readable explanation.
Installation
Requirements
Node.js ≥18.0.0
Python ≥3.8
AlphaGenome API key from Google DeepMind
Python packages:
alphagenome,numpy
Setup
1. Install Python dependencies:
2. Configure for your MCP client:
Recommended method:
Or manually add to
Test:
Add to ~/.config/claude/claude_code_config.json:
Test:
Add to ~/.gemini/settings.json:
Test:
Add to .cursor/mcp.json in your project root:
Test:
Add to your Windsurf settings JSON:
Test:
Verification
Expected: Detailed regulatory impact report within 30-60 seconds.
Important: Always include "use alphagenome" in queries to explicitly invoke the server.
Usage Examples
All examples show actual API results from tests with Alzheimer's disease variants.
Pathogenicity Assessment
Result:
Tissue-Specific Analysis
Result:
Interpretation: Tissue-differential effects. Brain shows downregulation (-0.23%) while liver shows upregulation (+0.07%).
Variant Comparison
Result:
TF Binding Analysis
Result:
Allele Comparison
Result:
Interpretation: All three alternative alleles show high regulatory impact with varying expression effects.
Clinical Report
Result:
Performance
First call: 30-60 seconds (initialization), subsequent calls: 8-15 seconds per variant
Modalities: 11 (RNA-seq, CAGE, PRO-cap, splice sites, DNase, ATAC, histone mods, TF binding, contact maps)
Development
Build from Source
Project Structure
Testing
Citation
If you use this software in your research, please cite:
AlphaGenome model:
Acknowledgments
Google DeepMind for developing and providing access to the AlphaGenome API
Anthropic for developing the Model Context Protocol specification and Claude Desktop
License
MIT License - Copyright (c) 2025 Taeho Jo
See LICENSE file for details.
Links
npm Package: https://www.npmjs.com/package/@jolab/alphagenome-mcp
GitHub Repository: https://github.com/taehojo/alphagenome-mcp
AlphaGenome: https://deepmind.google/discover/blog/alphagenome/
Model Context Protocol: https://modelcontextprotocol.io/
Claude Desktop: https://claude.ai/download
AlphaGenome MCP 서버
Google DeepMind의 AlphaGenome을 자연어로 사용할 수 있게 해주는 MCP 서버
개요
유전체 변이(genomic variant)의 조절 효과를 AI로 예측하는 AlphaGenome API를 MCP 클라이언트(Claude Desktop, Claude Code, Gemini CLI, Cursor, Windsurf 등)에서 자연어로 사용할 수 있습니다. Python 코드를 작성하지 않고 평범한 한국어나 영어로 변이를 분석할 수 있으며, 탐색적 분석과 빠른 프로토타이핑에 최적화되어 있습니다.
주요 기능
🧬 변이 효과 예측: 11가지 분자 양식(RNA-seq, ChIP-seq, ATAC-seq, 스플라이싱 등)에서 조절 영향 분석
🏥 병원성 평가: 임상 점수 산출 및 필터링
🔬 조직별 분석: 뇌, 간, 심장 등 여러 조직에서의 효과 프로파일링
📊 배치 처리: 대용량 변이 우선순위 지정
💬 자연어 인터페이스: 코딩 없이 rsID나 염색체 좌표로 쿼리
🔧 20가지 전문 도구: 단일 API를 감싸는 래퍼 아키텍처
⚡ 빠른 시작
3분 안에 시작하기:
Python 패키지 설치
pip install alphagenome numpyMCP 클라이언트에 추가 (Claude Desktop, Claude Code, Gemini CLI, Cursor, Windsurf 지원)
claude mcp add alphagenome -- npx -y @jolab/alphagenome-mcp@latest --api-key YOUR_API_KEY다른 MCP 클라이언트는 설치 방법 참고
첫 번째 쿼리 실행
MCP 클라이언트를 재시작하고 다음을 시도하세요:
"Use alphagenome to analyze chr19:44908684T>C"또는 한국어로:
"alphagenome을 사용해서 chr19:44908684T>C를 분석해줘"결과 확인 (30-60초 소요)
병원성 점수, 발현 영향, 스플라이싱 효과가 포함된 상세 보고서가 생성됩니다.
더 알아보기: 20가지 전문 도구 확인
시스템 구조
설치 방법
요구사항
Node.js ≥18.0.0
Python ≥3.8
AlphaGenome API 키 (Google DeepMind에서 발급)
Python 패키지:
alphagenome,numpy
설치
1. Python 패키지 설치:
2. MCP 클라이언트 설정:
권장 방법:
수동 설정 (
테스트:
~/.config/claude/claude_code_config.json에 추가:
프로젝트 루트의 .cursor/mcp.json에 추가:
사용 예시
병원성 평가
결과: 병원성 점수 1.0, 발현 영향 0.0023, 스플라이싱 영향 0.0263
조직별 분석
결과: 뇌에서 -0.23% 하향조절, 간에서 +0.07% 상향조절
변이 비교
결과: ε4가 더 심각한 영향 (발현 변화 -0.0023 vs +0.0012)
스플라이싱 영향
배치 처리
성능
첫 호출: 30-60초 (초기화), 이후 호출: 변이당 8-15초
분석 양식: 11가지 (RNA-seq, CAGE, PRO-cap, 스플라이스 사이트, DNase, ATAC, 히스톤 변형, 전사인자 결합, 접촉 맵)
인용
이 소프트웨어를 연구에 사용하신다면 다음과 같이 인용해주세요:
AlphaGenome 모델:
상세 문서
전체 도구 목록, 상세 사용 예제, API 응답 형식, 개발 가이드는 영문 문서를 참고하세요.
라이선스
MIT License - Copyright (c) 2025 Taeho Jo
링크
npm 패키지: https://www.npmjs.com/package/@jolab/alphagenome-mcp
GitHub 저장소: https://github.com/taehojo/alphagenome-mcp
AlphaGenome: https://deepmind.google/discover/blog/alphagenome/
Model Context Protocol: https://modelcontextprotocol.io/
This server cannot be installed