Skip to main content
Glama

AlphaGenome MCP Server

by taehojo
MIT License
README.md22 kB
# AlphaGenome MCP Server <p align="center"> <a href="#english">English</a> • <a href="#korean">한국어</a> </p> [![npm version](https://badge.fury.io/js/%40jolab%2Falphagenome-mcp.svg)](https://www.npmjs.com/package/@jolab/alphagenome-mcp) [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT) <div id="english"> A Model Context Protocol (MCP) server that provides natural language access to Google DeepMind's AlphaGenome variant effect prediction API. > **한국어 요약:** Google DeepMind AlphaGenome API를 MCP 클라이언트(Claude Desktop, Claude Code, Gemini CLI, Cursor, Windsurf 등)에서 자연어로 사용할 수 있게 해주는 MCP 서버입니다. 유전체 변이의 조절 효과, 병원성, 조직별 영향을 분석할 수 있습니다. [한국어 전체 문서 보기](#korean) ## Overview AlphaGenome MCP Server provides a natural language interface to Google DeepMind's AlphaGenome variant effect prediction API. Query genomic variants using plain English instead of writing Python code, designed for exploratory analysis and rapid prototyping. **Key Features:** - **Natural Language Interface**: Query variants using plain English instead of writing code - **Wrapper Architecture**: 20 specialized tools built as wrappers around a single API endpoint - **Comprehensive Analysis**: Access all AlphaGenome modalities (RNA-seq, ChIP-seq, ATAC-seq, splicing, etc.) - **Research Tool**: Designed for exploratory genomics research and variant prioritization ## ⚡ Quick Start **Get started in 3 minutes:** 1. **Install dependencies** ```bash pip install alphagenome numpy ``` 2. **Add to your MCP client** (supports Claude Desktop, Claude Code, Gemini CLI, Cursor, Windsurf) ```bash claude mcp add alphagenome -- npx -y @jolab/alphagenome-mcp@latest --api-key YOUR_API_KEY ``` See [Installation](#installation) for other MCP clients. 3. **Run your first query** Restart your MCP client and try: ``` "Use alphagenome to analyze chr19:44908684T>C" ``` 4. **View results** (takes 30-60 seconds) You'll get a detailed report with pathogenicity scores, expression impacts, and splicing effects. **Want more?** Check out [20 specialized tools](#available-tools) below. ## Architecture ### System Design AlphaGenome MCP Server implements a multi-tier architecture: ``` ┌─────────────────────────┐ │ Researcher │ └───────────┬─────────────┘ │ Natural language query ↓ ┌─────────────────────────┐ │ Claude Desktop │ ← MCP Client └───────────┬─────────────┘ │ JSON-RPC over stdio ↓ ┌─────────────────────────┐ │ MCP Server (TypeScript)│ ← Tool routing, validation └───────────┬─────────────┘ │ subprocess ↓ ┌─────────────────────────┐ │ Python Bridge │ ← Interface to AlphaGenome SDK └───────────┬─────────────┘ │ HTTP ↓ ┌─────────────────────────┐ │ AlphaGenome API │ ← Google DeepMind's service └─────────────────────────┘ ``` ### Wrapper Pattern All 20 tools are lightweight wrappers around the same `predict_variant()` API endpoint. They differ only in parameter configuration and output formatting: ```python # Same underlying API call predict_variant(variant, interval, ontology_terms, requested_outputs) # Different wrappers provide specialized views: - assess_pathogenicity() → Clinical scoring - predict_tf_binding_impact() → TF binding only - compare_variants() → Side-by-side comparison - generate_variant_report() → Formatted report ``` **Benefits of Wrapper Architecture:** - Single API implementation serves 20 different functions - Specialized outputs through parameter configuration - Easy maintenance (update once, all tools benefit) - Consistent interface across all tools ### Input Validation All inputs undergo validation before API submission: - Chromosomes: Pattern-matched for chr1-22, chrX, chrY - Positions: Validated as positive integers - Alleles: A/T/G/C nucleotide validation - Tissue types: UBERON ontology term validation Invalid inputs return human-readable error messages, enabling conversational error recovery. ## Available Tools ### Core Analysis #### predict_variant_effect Full regulatory impact prediction across all 11 modalities. ``` "Use alphagenome to analyze chr19:44908684T>C" ``` #### assess_pathogenicity Clinical pathogenicity scoring with evidence breakdown. ``` "Use alphagenome to assess the pathogenicity of rs429358" ``` **Result:** `Pathogenic (score: 1.0)` with expression, splicing, and TF binding evidence. ### Tissue-Specific Analysis #### predict_tissue_specific Compare variant effects across multiple tissues. ``` "Use alphagenome to compare rs429358 effects in brain and liver" ``` **Result:** Tissue-differential expression (brain: -0.23%, liver: +0.07%) #### batch_tissue_comparison Multi-variant × multi-tissue analysis. ``` "Use alphagenome to test 5 variants in brain, liver, and heart" ``` ### Variant Comparison #### compare_variants Direct side-by-side comparison. ``` "Use alphagenome to compare APOE ε4 (rs429358) vs ε2 (rs7412)" ``` #### compare_alleles Compare different mutations at the same position. ``` "Use alphagenome to compare T>C, T>G, T>A at chr19:44908684" ``` #### compare_protective_risk Compare protective vs risk alleles. ``` "Use alphagenome to compare APOE protective vs risk alleles" ``` #### compare_variants_same_gene Rank variants within a gene. ``` "Use alphagenome to compare these 5 BRCA1 variants" ``` ### Modality-Specific Analysis #### predict_splice_impact Splicing effects only. ``` "Use alphagenome to analyze splicing impact of chr6:41129252C>T" ``` #### predict_expression_impact Gene expression changes only. ``` "Use alphagenome to show expression impact of rs744373" ``` #### predict_tf_binding_impact Transcription factor binding changes. ``` "Use alphagenome to show TF binding changes for rs429358" ``` #### predict_chromatin_impact Chromatin accessibility changes. ``` "Use alphagenome to analyze chromatin impact of rs429358" ``` #### batch_modality_screen Screen variants for specific effects. ``` "Use alphagenome to screen 20 variants for splicing effects" ``` ### Multiple Variant Processing #### batch_score_variants Rank multiple variants by regulatory impact. ``` "Use alphagenome to score these AD variants: rs429358, rs7412, rs75932628" ``` #### analyze_gwas_locus Fine-mapping and causal variant identification. ``` "Use alphagenome to analyze GWAS locus with 10 variants" ``` #### batch_pathogenicity_filter Filter variants by pathogenicity threshold. ``` "Use alphagenome to filter these 100 variants for pathogenicity > 0.7" ``` ### Regulatory Annotation #### annotate_regulatory_context Comprehensive regulatory context. ``` "Use alphagenome to annotate regulatory context of rs429358" ``` #### predict_allele_specific_effects Allele-specific regulatory effects. ``` "Use alphagenome to show allele-specific effects for rs429358" ``` ### Clinical Reporting #### generate_variant_report Comprehensive clinical report. ``` "Use alphagenome to generate a clinical report for rs429358" ``` #### explain_variant_impact Human-readable explanation. ``` "Use alphagenome to explain the impact of rs429358 in simple terms" ``` ## Installation ### Requirements - Node.js ≥18.0.0 - Python ≥3.8 - AlphaGenome API key from Google DeepMind - Python packages: `alphagenome`, `numpy` ### Setup **1. Install Python dependencies:** ```bash pip install alphagenome numpy ``` **2. Configure for your MCP client:** <details> <summary><b>Claude Desktop</b></summary> **Recommended method:** ```bash claude mcp add alphagenome -- npx -y @jolab/alphagenome-mcp@latest --api-key YOUR_API_KEY ``` **Or manually add to `~/.config/claude/claude_desktop_config.json`:** ```json { "mcpServers": { "alphagenome": { "command": "npx", "args": ["-y", "@jolab/alphagenome-mcp@latest", "--api-key", "YOUR_API_KEY"] } } } ``` **Test:** ``` "Use alphagenome to analyze chr19:44908684T>C" ``` </details> <details> <summary><b>Claude Code</b></summary> Add to `~/.config/claude/claude_code_config.json`: ```json { "mcpServers": { "alphagenome": { "command": "npx", "args": ["-y", "@jolab/alphagenome-mcp@latest", "--api-key", "YOUR_API_KEY"] } } } ``` **Test:** ``` "Use alphagenome to analyze chr19:44908684T>C" ``` </details> <details> <summary><b>Gemini CLI</b></summary> Add to `~/.gemini/settings.json`: ```json { "mcpServers": { "alphagenome": { "command": "npx", "args": ["-y", "@jolab/alphagenome-mcp@latest", "--api-key", "YOUR_API_KEY"] } } } ``` **Test:** ``` "Use alphagenome to analyze chr19:44908684T>C" ``` </details> <details> <summary><b>Cursor</b></summary> Add to `.cursor/mcp.json` in your project root: ```json { "mcpServers": { "alphagenome": { "command": "npx", "args": ["-y", "@jolab/alphagenome-mcp@latest", "--api-key", "YOUR_API_KEY"] } } } ``` **Test:** ``` "Use alphagenome to analyze chr19:44908684T>C" ``` </details> <details> <summary><b>Windsurf</b></summary> Add to your Windsurf settings JSON: ```json { "mcpServers": { "alphagenome": { "command": "npx", "args": ["-y", "@jolab/alphagenome-mcp@latest", "--api-key", "YOUR_API_KEY"] } } } ``` **Test:** ``` "Use alphagenome to analyze chr19:44908684T>C" ``` </details> ### Verification Expected: Detailed regulatory impact report within 30-60 seconds. **Important:** Always include "use alphagenome" in queries to explicitly invoke the server. ## Usage Examples All examples show actual API results from tests with Alzheimer's disease variants. ### Pathogenicity Assessment ``` User: "Use alphagenome to assess the pathogenicity of rs429358" ``` **Result:** ```json { "variant": "chr19:44908684T>C", "classification": "PATHOGENIC", "pathogenicity_score": 1.0, "evidence": { "expression_impact": 0.0023, "splicing_impact": 0.0263, "tf_binding_impact": 24.0 }, "recommendation": "Further clinical evaluation recommended" } ``` ### Tissue-Specific Analysis ``` User: "Use alphagenome to compare rs429358 effects in brain and liver" ``` **Result:** ```json { "variant": "chr19:44908684T>C", "tissue_results": { "brain": { "expression_impact": -0.0023, "impact_level": "high" }, "liver": { "expression_impact": 0.0007, "impact_level": "high" } } } ``` **Interpretation:** Tissue-differential effects. Brain shows downregulation (-0.23%) while liver shows upregulation (+0.07%). ### Variant Comparison ``` User: "Use alphagenome to compare APOE ε4 (rs429358) vs ε2 (rs7412)" ``` **Result:** ```json { "variant1": { "id": "chr19:44908684T>C", "impact": "high", "expression_fc": -0.0023 }, "variant2": { "id": "chr19:44908822C>T", "impact": "high", "expression_fc": 0.0012 }, "comparison": { "more_severe": "chr19:44908684T>C" } } ``` ### TF Binding Analysis ``` User: "Use alphagenome to show TF binding changes for rs429358" ``` **Result:** ```json { "variant": "chr19:44908684T>C", "tf_binding": [{ "change": 24.0 }], "impact_level": "high" } ``` ### Allele Comparison ``` User: "Use alphagenome to compare T>C, T>G, T>A at chr19:44908684" ``` **Result:** ```json { "position": "chr19:44908684", "allele_comparisons": { "T>C": { "expression_fc": -0.0023, "impact": "high" }, "T>G": { "expression_fc": -0.0038, "impact": "high" }, "T>A": { "expression_fc": 0.0035, "impact": "high" } } } ``` **Interpretation:** All three alternative alleles show high regulatory impact with varying expression effects. ### Clinical Report ``` User: "Use alphagenome to generate a clinical report for rs429358" ``` **Result:** ``` VARIANT REPORT: chr19:44908684T>C (rs429358) Classification: PATHOGENIC Pathogenicity Score: 1.0 Evidence Summary: - Expression Impact: 0.0023 (fold change) - Splicing Impact: 0.0263 (delta score) - TF Binding Impact: 24.0 (change score) Recommendation: Further clinical evaluation recommended ``` ## Performance - **First call**: 30-60 seconds (initialization), subsequent calls: 8-15 seconds per variant - **Modalities**: 11 (RNA-seq, CAGE, PRO-cap, splice sites, DNase, ATAC, histone mods, TF binding, contact maps) ## Development ### Build from Source ```bash git clone https://github.com/taehojo/alphagenome-mcp.git cd alphagenome-mcp npm install pip install -r requirements.txt npm run build ``` ### Project Structure ``` src/ ├── index.ts # MCP server entry point ├── alphagenome-client.ts # API client (Python bridge) ├── tools.ts # MCP tool definitions ├── types.ts # TypeScript type definitions └── utils/ ├── validation.ts # Input validation (Zod schemas) └── formatting.ts # Output formatting scripts/ └── alphagenome_bridge.py # Python bridge to AlphaGenome SDK ``` ### Testing ```bash npm run lint # ESLint check npm run typecheck # TypeScript type checking npm run build # Compile to build/ ``` ## Citation If you use this software in your research, please cite: ```bibtex @software{jo2025alphagenome_mcp, author = {Jo, Taeho}, title = {AlphaGenome MCP Server}, year = {2025}, url = {https://github.com/taehojo/alphagenome-mcp}, version = {0.2.0} } ``` AlphaGenome model: ```bibtex @article{avsec2025alphagenome, title = {AlphaGenome: advancing regulatory variant effect prediction with a unified DNA sequence model}, author = {Avsec, Žiga and Latysheva, Natasha and Cheng, Jun and others}, journal = {bioRxiv}, year = {2025} } ``` ## Acknowledgments - **Google DeepMind** for developing and providing access to the AlphaGenome API - **Anthropic** for developing the Model Context Protocol specification and Claude Desktop ## License MIT License - Copyright (c) 2025 Taeho Jo See [LICENSE](LICENSE) file for details. ## Links - **npm Package**: https://www.npmjs.com/package/@jolab/alphagenome-mcp - **GitHub Repository**: https://github.com/taehojo/alphagenome-mcp - **AlphaGenome**: https://deepmind.google/discover/blog/alphagenome/ - **Model Context Protocol**: https://modelcontextprotocol.io/ - **Claude Desktop**: https://claude.ai/download </div> --- <div id="korean"> # AlphaGenome MCP 서버 > Google DeepMind의 AlphaGenome을 자연어로 사용할 수 있게 해주는 MCP 서버 [![npm version](https://badge.fury.io/js/%40jolab%2Falphagenome-mcp.svg)](https://www.npmjs.com/package/@jolab/alphagenome-mcp) [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT) ## 개요 유전체 변이(genomic variant)의 조절 효과를 AI로 예측하는 AlphaGenome API를 MCP 클라이언트(Claude Desktop, Claude Code, Gemini CLI, Cursor, Windsurf 등)에서 자연어로 사용할 수 있습니다. Python 코드를 작성하지 않고 평범한 한국어나 영어로 변이를 분석할 수 있으며, 탐색적 분석과 빠른 프로토타이핑에 최적화되어 있습니다. ## 주요 기능 - 🧬 **변이 효과 예측**: 11가지 분자 양식(RNA-seq, ChIP-seq, ATAC-seq, 스플라이싱 등)에서 조절 영향 분석 - 🏥 **병원성 평가**: 임상 점수 산출 및 필터링 - 🔬 **조직별 분석**: 뇌, 간, 심장 등 여러 조직에서의 효과 프로파일링 - 📊 **배치 처리**: 대용량 변이 우선순위 지정 - 💬 **자연어 인터페이스**: 코딩 없이 rsID나 염색체 좌표로 쿼리 - 🔧 **20가지 전문 도구**: 단일 API를 감싸는 래퍼 아키텍처 ## ⚡ 빠른 시작 **3분 안에 시작하기:** 1. **Python 패키지 설치** ```bash pip install alphagenome numpy ``` 2. **MCP 클라이언트에 추가** (Claude Desktop, Claude Code, Gemini CLI, Cursor, Windsurf 지원) ```bash claude mcp add alphagenome -- npx -y @jolab/alphagenome-mcp@latest --api-key YOUR_API_KEY ``` 다른 MCP 클라이언트는 [설치 방법](#설치-방법) 참고 3. **첫 번째 쿼리 실행** MCP 클라이언트를 재시작하고 다음을 시도하세요: ``` "Use alphagenome to analyze chr19:44908684T>C" ``` 또는 한국어로: ``` "alphagenome을 사용해서 chr19:44908684T>C를 분석해줘" ``` 4. **결과 확인** (30-60초 소요) 병원성 점수, 발현 영향, 스플라이싱 효과가 포함된 상세 보고서가 생성됩니다. **더 알아보기:** [20가지 전문 도구](#사용-예시) 확인 ## 시스템 구조 ``` ┌─────────────────────────┐ │ 연구자 │ └───────────┬─────────────┘ │ 자연어 쿼리 ↓ ┌─────────────────────────┐ │ Claude Desktop │ ← MCP 클라이언트 └───────────┬─────────────┘ │ JSON-RPC (stdio) ↓ ┌─────────────────────────┐ │ MCP 서버 (TypeScript) │ ← 도구 라우팅, 검증 └───────────┬─────────────┘ │ subprocess ↓ ┌─────────────────────────┐ │ Python 브리지 │ ← AlphaGenome SDK 인터페이스 └───────────┬─────────────┘ │ HTTP ↓ ┌─────────────────────────┐ │ AlphaGenome API │ ← Google DeepMind 서비스 └─────────────────────────┘ ``` ## 설치 방법 ### 요구사항 - Node.js ≥18.0.0 - Python ≥3.8 - AlphaGenome API 키 (Google DeepMind에서 발급) - Python 패키지: `alphagenome`, `numpy` ### 설치 **1. Python 패키지 설치:** ```bash pip install alphagenome numpy ``` **2. MCP 클라이언트 설정:** <details> <summary><b>Claude Desktop</b></summary> **권장 방법:** ```bash claude mcp add alphagenome -- npx -y @jolab/alphagenome-mcp@latest --api-key YOUR_API_KEY ``` **수동 설정 (`~/.config/claude/claude_desktop_config.json`):** ```json { "mcpServers": { "alphagenome": { "command": "npx", "args": ["-y", "@jolab/alphagenome-mcp@latest", "--api-key", "YOUR_API_KEY"] } } } ``` **테스트:** ``` "alphagenome으로 chr19:44908684T>C를 분석해줘" ``` </details> <details> <summary><b>Claude Code</b></summary> `~/.config/claude/claude_code_config.json`에 추가: ```json { "mcpServers": { "alphagenome": { "command": "npx", "args": ["-y", "@jolab/alphagenome-mcp@latest", "--api-key", "YOUR_API_KEY"] } } } ``` </details> <details> <summary><b>Cursor</b></summary> 프로젝트 루트의 `.cursor/mcp.json`에 추가: ```json { "mcpServers": { "alphagenome": { "command": "npx", "args": ["-y", "@jolab/alphagenome-mcp@latest", "--api-key", "YOUR_API_KEY"] } } } ``` </details> ## 사용 예시 ### 병원성 평가 ``` "rs429358의 병원성을 평가해줘" ``` **결과:** 병원성 점수 1.0, 발현 영향 0.0023, 스플라이싱 영향 0.0263 ### 조직별 분석 ``` "rs429358의 뇌와 간에서의 효과를 비교해줘" ``` **결과:** 뇌에서 -0.23% 하향조절, 간에서 +0.07% 상향조절 ### 변이 비교 ``` "APOE ε4 (rs429358)와 ε2 (rs7412)를 비교해줘" ``` **결과:** ε4가 더 심각한 영향 (발현 변화 -0.0023 vs +0.0012) ### 스플라이싱 영향 ``` "chr6:41129252C>T의 스플라이싱 영향을 분석해줘" ``` ### 배치 처리 ``` "이 10개 변이를 병원성 점수로 정렬해줘" ``` ## 성능 - **첫 호출**: 30-60초 (초기화), 이후 호출: 변이당 8-15초 - **분석 양식**: 11가지 (RNA-seq, CAGE, PRO-cap, 스플라이스 사이트, DNase, ATAC, 히스톤 변형, 전사인자 결합, 접촉 맵) ## 인용 이 소프트웨어를 연구에 사용하신다면 다음과 같이 인용해주세요: ```bibtex @software{jo2025alphagenome_mcp, author = {Jo, Taeho}, title = {AlphaGenome MCP Server}, year = {2025}, url = {https://github.com/taehojo/alphagenome-mcp}, version = {0.2.0} } ``` AlphaGenome 모델: ```bibtex @article{avsec2025alphagenome, title = {AlphaGenome: advancing regulatory variant effect prediction with a unified DNA sequence model}, author = {Avsec, Žiga and Latysheva, Natasha and Cheng, Jun and others}, journal = {bioRxiv}, year = {2025} } ``` ## 상세 문서 전체 도구 목록, 상세 사용 예제, API 응답 형식, 개발 가이드는 [영문 문서](#english)를 참고하세요. ## 라이선스 MIT License - Copyright (c) 2025 Taeho Jo ## 링크 - **npm 패키지**: https://www.npmjs.com/package/@jolab/alphagenome-mcp - **GitHub 저장소**: https://github.com/taehojo/alphagenome-mcp - **AlphaGenome**: https://deepmind.google/discover/blog/alphagenome/ - **Model Context Protocol**: https://modelcontextprotocol.io/ </div>

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/taehojo/alphagenome-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server