Skip to main content
Glama

SuperDataAnalysis - DataMaster_MCP

by szqshan
start_mcp_server.py1.6 kB
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ DataMaster MCP 服务器启动脚本 这个脚本用于直接启动 DataMaster MCP 服务器,方便本地测试和开发。 使用方法: python start_mcp_server.py 或者: python -m datamaster_mcp.main """ import sys import os from pathlib import Path def main(): """启动 MCP 服务器""" print("🚀 启动 DataMaster MCP 服务器...") print("=" * 50) # 确保当前目录在 Python 路径中 current_dir = Path(__file__).parent if str(current_dir) not in sys.path: sys.path.insert(0, str(current_dir)) try: # 导入并启动 MCP 服务器 from datamaster_mcp.main import main as mcp_main print("✅ DataMaster MCP 模块加载成功") print("📡 正在启动 MCP 服务器...") print("\n💡 提示: 按 Ctrl+C 停止服务器") print("=" * 50) # 启动服务器 mcp_main() except KeyboardInterrupt: print("\n\n🛑 服务器已停止") sys.exit(0) except ImportError as e: print(f"❌ 导入错误: {e}") print("\n🔧 解决方案:") print("1. 确保在正确的项目目录中") print("2. 运行: pip install -r requirements.txt") sys.exit(1) except Exception as e: print(f"❌ 启动失败: {e}") print("\n🔧 请检查:") print("1. Python 版本 >= 3.8") print("2. 所有依赖包已安装") print("3. 项目文件完整") sys.exit(1) if __name__ == "__main__": main()

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/szqshan/DataMaster'

If you have feedback or need assistance with the MCP directory API, please join our Discord server