Skip to main content
Glama

enhance_prompt_gemini

Improve AI prompts using Gemini API strategies like Few-Shot examples and structured formatting to increase response quality and clarity.

Instructions

프롬프트 개선|제미나이 전략|품질 향상|prompt enhancement|gemini strategies|quality improvement - Enhance prompts using Gemini API prompting strategies (Few-Shot, Output Format, Context)

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
promptYesThe original prompt to enhance
agent_roleNoThe role of the agent that will receive this prompt (e.g., "Specification Agent", "Planning Agent")
strategiesNoSpecific Gemini strategies to apply. If not provided, all strategies will be applied.

Implementation Reference

  • Main handler function implementing the enhance_prompt_gemini tool. Applies Gemini prompting strategies (few-shot, output-format, etc.) to enhance the input prompt, generates structured output with improvements.
    export async function enhancePromptGemini(args: { prompt: string; agent_role?: string; strategies?: string[]; }): Promise<ToolResult> { const { prompt, agent_role, strategies } = args; const allStrategies = ['few-shot', 'output-format', 'context-placement', 'decomposition', 'parameters']; const strategiesToApply = strategies && strategies.length > 0 ? strategies : allStrategies; const enhancements: PromptEnhancement[] = []; // 1. Few-Shot Examples if (strategiesToApply.includes('few-shot')) { enhancements.push({ strategy: 'Few-Shot 예시 추가', description: '2-3개의 고품질 예시를 추가하여 모델이 패턴을 학습하도록 유도', applied: addFewShotExamples(prompt, agent_role), improvement: '형식, 표현, 범위를 명확히 하여 일관성 향상' }); } // 2. Output Format Specification if (strategiesToApply.includes('output-format')) { enhancements.push({ strategy: '출력 형식 명시화', description: 'XML 태그나 마크다운 헤더로 구조화된 형식 지정', applied: specifyOutputFormat(prompt, agent_role), improvement: '원하는 응답 구조를 명확히 하여 파싱 용이성 향상' }); } // 3. Context Placement if (strategiesToApply.includes('context-placement')) { enhancements.push({ strategy: '컨텍스트 배치 최적화', description: '긴 컨텍스트를 특정 요청 전에 배치 (Gemini 3 최적화)', applied: optimizeContextPlacement(prompt), improvement: '모델이 컨텍스트를 더 효과적으로 활용' }); } // 4. Prompt Decomposition if (strategiesToApply.includes('decomposition')) { enhancements.push({ strategy: '프롬프트 분해', description: '복잡한 작업을 여러 단계로 분해하여 체인화', applied: decomposePrompt(prompt, agent_role), improvement: '각 단계의 출력 품질 향상, 디버깅 용이' }); } // 5. Parameter Tuning Suggestions if (strategiesToApply.includes('parameters')) { enhancements.push({ strategy: '매개변수 튜닝 제안', description: 'Temperature, Top-K, Top-P, Max Tokens 최적 값 제안', applied: suggestParameters(prompt, agent_role), improvement: '작업 유형에 맞는 모델 동작 최적화' }); } const result = { original_prompt: prompt, agent_role: agent_role || 'Generic Agent', strategies_applied: strategiesToApply, enhancements, enhanced_prompt: combineEnhancements(prompt, enhancements), summary: generateSummary(enhancements) }; const output = formatOutput(result); return { content: [{ type: 'text', text: output }] }; }
  • ToolDefinition schema defining the input schema, description, and annotations for the enhance_prompt_gemini tool.
    export const enhancePromptGeminiDefinition: ToolDefinition = { name: 'enhance_prompt_gemini', description: '프롬프트 개선|제미나이 전략|품질 향상|prompt enhancement|gemini strategies|quality improvement - Enhance prompts using Gemini API prompting strategies (Few-Shot, Output Format, Context)', inputSchema: { type: 'object', properties: { prompt: { type: 'string', description: 'The original prompt to enhance' }, agent_role: { type: 'string', description: 'The role of the agent that will receive this prompt (e.g., "Specification Agent", "Planning Agent")' }, strategies: { type: 'array', items: { type: 'string', enum: ['few-shot', 'output-format', 'context-placement', 'decomposition', 'parameters'] }, description: 'Specific Gemini strategies to apply. If not provided, all strategies will be applied.' } }, required: ['prompt'] }, annotations: { title: 'Enhance Prompt (Gemini Strategies)', audience: ['user', 'assistant'], readOnlyHint: true, destructiveHint: false, idempotentHint: true, openWorldHint: false } };
  • src/index.ts:155-212 (registration)
    Registration of the tool handler in the toolHandlers object used for dynamic dispatch in callToolRequest handler.
    const toolHandlers: Record<string, ToolHandler> = { // Time & UI 'get_current_time': getCurrentTime, 'preview_ui_ascii': previewUiAscii, // Memory - Basic 'save_memory': saveMemory, 'recall_memory': recallMemory, 'update_memory': updateMemory, 'delete_memory': deleteMemory, 'list_memories': listMemories, 'prioritize_memory': prioritizeMemory, // Memory - Graph (v2.0 NEW) 'link_memories': linkMemories, 'get_memory_graph': getMemoryGraph, 'search_memories_advanced': searchMemoriesAdvanced, 'create_memory_timeline': createMemoryTimeline, // Memory - Session Context (v2.1 NEW) 'get_session_context': getSessionContext, // Code Analysis 'find_symbol': findSymbol, 'find_references': findReferences, 'analyze_dependency_graph': analyzeDependencyGraph, // Code Quality 'get_coding_guide': getCodingGuide, 'apply_quality_rules': applyQualityRules, 'validate_code_quality': validateCodeQuality, 'analyze_complexity': analyzeComplexity, 'check_coupling_cohesion': checkCouplingCohesion, 'suggest_improvements': suggestImprovements, // Thinking 'create_thinking_chain': createThinkingChain, 'analyze_problem': analyzeProblem, 'step_by_step_analysis': stepByStepAnalysis, 'format_as_plan': formatAsPlan, // Planning 'generate_prd': generatePrd, 'create_user_stories': createUserStories, 'analyze_requirements': analyzeRequirements, 'feature_roadmap': featureRoadmap, // Prompt 'enhance_prompt': enhancePrompt, 'analyze_prompt': analyzePrompt, 'enhance_prompt_gemini': enhancePromptGemini, // Reasoning 'apply_reasoning_framework': applyReasoningFramework, // Analytics (v2.0 NEW) 'get_usage_analytics': getUsageAnalytics };
  • src/index.ts:88-145 (registration)
    Registration of the tool definition in the tools array returned by listToolsRequest handler.
    const tools = [ // Core Utilities (2) getCurrentTimeDefinition, previewUiAsciiDefinition, // Memory Management - Basic (6) saveMemoryDefinition, recallMemoryDefinition, updateMemoryDefinition, deleteMemoryDefinition, listMemoriesDefinition, prioritizeMemoryDefinition, // Memory Management - Graph (4) - v2.0 NEW linkMemoriesDefinition, getMemoryGraphDefinition, searchMemoriesAdvancedDefinition, createMemoryTimelineDefinition, // Memory Management - Session Context (1) - v2.1 NEW getSessionContextDefinition, // Code Analysis - Semantic (2) findSymbolDefinition, findReferencesDefinition, // Code Analysis - Advanced (1) - v2.0 NEW analyzeDependencyGraphDefinition, // Code Quality (6) getCodingGuideDefinition, applyQualityRulesDefinition, validateCodeQualityDefinition, analyzeComplexityDefinition, checkCouplingCohesionDefinition, suggestImprovementsDefinition, // Thinking & Planning (8) createThinkingChainDefinition, analyzeProblemDefinition, stepByStepAnalysisDefinition, formatAsPlanDefinition, generatePrdDefinition, createUserStoriesDefinition, analyzeRequirementsDefinition, featureRoadmapDefinition, // Prompt Engineering (3) enhancePromptDefinition, analyzePromptDefinition, enhancePromptGeminiDefinition, // Reasoning (1) applyReasoningFrameworkDefinition, // Analytics (1) - v2.0 NEW getUsageAnalyticsDefinition ];
  • Supporting helper functions that implement individual Gemini strategies and format the final output.
    } // Helper methods

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/su-record/hi-ai'

If you have feedback or need assistance with the MCP directory API, please join our Discord server