Skip to main content
Glama

validate_connector_configuration

Validate Kafka connector configurations to identify errors before deployment, ensuring proper integration with Lenses MCP Server environments.

Instructions

Validates a Kafka connector configuration.

Args: environment: The environment name. name: The name of the connector. cluster: The cluster name. configuration: The connector configuration to validate.

Returns: Validation results including configuration details and any errors.

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
environmentYes
nameYes
clusterYes
configurationYes

Implementation Reference

  • The main handler function for the 'validate_connector_configuration' tool. It constructs a payload with name, cluster, and configuration, then makes a POST request to the /proxy/api/kafka-connect/validate endpoint to perform validation.
    async def validate_connector_configuration( environment: str, name: str, cluster: str, configuration: Dict[str, Any] ) -> Dict[str, Any]: """ Validates a Kafka connector configuration. Args: environment: The environment name. name: The name of the connector. cluster: The cluster name. configuration: The connector configuration to validate. Returns: Validation results including configuration details and any errors. """ payload = { "name": name, "cluster": cluster, "configuration": configuration } endpoint = f"/api/v1/environments/{environment}/proxy/api/kafka-connect/validate" return await api_client._make_request("POST", endpoint, payload)
  • Registers the kafka_connectors tools, including 'validate_connector_configuration', by calling the register_kafka_connectors function on the MCP instance.
    register_kafka_connectors(mcp)

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/stereosky/lenses-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server