Skip to main content
Glama

update_topic_metadata

Modify metadata for Kafka topics in Lenses.io environments to organize and document data streams across clusters.

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
environmentYes
metadataYes

Implementation Reference

  • The async handler function for the 'update_topic_metadata' tool, decorated with @mcp.tool() to register it. It takes environment and metadata dict, and posts to the API endpoint /api/v1/environments/{environment}/proxy/api/v1/metadata/topics to update the topic metadata.
    @mcp.tool() async def update_topic_metadata( environment: str, metadata: Dict[str, Any] ) -> str: f""" Update topic metadata. The required parameters are: topicName, keyType and valueType. When updating tags, it is not a list of strings. It is a list of objects with parameter 'name', e.g. [{{'name':'tag1'}},{{'name':'tag2'}}] Args: environment: The environment name. topic_name: Name of the topic. configs: Metadata key-value pairs with the following value types: { "topicName": "text", "keyType": "text", "valueType": "text", "keySchema": "text", "keySchemaVersion": 1, "keySchemaInlined": "text", "valueSchema": "text", "valueSchemaVersion": 1, "valueSchemaInlined": "text", "description": "text", "tags": [ {{ "name": "text" }} ], "additionalInfo": null } Returns: Success message. """ endpoint = f"/api/v1/environments/{environment}/proxy/api/v1/metadata/topics" return await api_client._make_request("POST", endpoint, metadata)
  • The call to register_topics(mcp) which executes the registration of the update_topic_metadata tool (along with other topic tools) via the nested @mcp.tool() decorators.
    register_topics(mcp)

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/stereosky/lenses-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server