Skip to main content
Glama

MCP-RAG Server

README.md2.79 kB
# MCP-RAG: Model Context Protocol with RAG 🚀 A powerful and efficient RAG (Retrieval-Augmented Generation) implementation using GroundX and OpenAI, built with Modern Context Processing (MCP). ## 🌟 Features - **Advanced RAG Implementation**: Utilizes GroundX for high-accuracy document retrieval - **Model Context Protocol**: Seamless integration with MCP for enhanced context handling - **Type-Safe**: Built with Pydantic for robust type checking and validation - **Flexible Configuration**: Easy-to-customize settings through environment variables - **Document Ingestion**: Support for PDF document ingestion and processing - **Intelligent Search**: Semantic search capabilities with scoring ## 🛠️ Prerequisites - Python 3.12 or higher - OpenAI API key - GroundX API key - MCP CLI tools ## 📦 Installation 1. Clone the repository: ```bash git clone <repository-url> cd mcp-rag ``` 2. Create and activate a virtual environment: ```bash uv sync source .venv/bin/activate # On Windows, use `.venv\Scripts\activate` ``` ## ⚙️ Configuration 1. Copy the example environment file: ```bash cp .env.example .env ``` 2. Configure your environment variables in `.env`: ```env GROUNDX_API_KEY="your-groundx-api-key" OPENAI_API_KEY="your-openai-api-key" BUCKET_ID="your-bucket-id" ``` ## 🚀 Usage ### Starting the Server Run the inspect server using: ```bash mcp dev server.py ``` ### Document Ingestion To ingest new documents: ```python from server import ingest_documents result = ingest_documents("path/to/your/document.pdf") print(result) ``` ### Performing Searches Basic search query: ```python from server import process_search_query response = process_search_query("your search query here") print(f"Query: {response.query}") print(f"Score: {response.score}") print(f"Result: {response.result}") ``` With custom configuration: ```python from server import process_search_query, SearchConfig config = SearchConfig( completion_model="gpt-4", bucket_id="custom-bucket-id" ) response = process_search_query("your query", config) ``` ## 📚 Dependencies - `groundx` (≥2.3.0): Core RAG functionality - `openai` (≥1.75.0): OpenAI API integration - `mcp[cli]` (≥1.6.0): Modern Context Processing tools - `ipykernel` (≥6.29.5): Jupyter notebook support ## 🔒 Security - Never commit your `.env` file containing API keys - Use environment variables for all sensitive information - Regularly rotate your API keys - Monitor API usage for any unauthorized access ## 🤝 Contributing 1. Fork the repository 2. Create your feature branch (`git checkout -b feature/amazing-feature`) 3. Commit your changes (`git commit -m 'Add some amazing feature'`) 4. Push to the branch (`git push origin feature/amazing-feature`) 5. Open a Pull Request

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/sourangshupal/mcp-rag'

If you have feedback or need assistance with the MCP directory API, please join our Discord server