Planned integration for automated posting of generated videos to Instagram as part of the content scheduling roadmap.
Integrates with local Ollama models to generate shot plans and scene breakdowns from text scripts, providing an offline alternative for storyboard planning.
Uses OpenAI's Chat Completions API to generate structured shot plans and scene breakdowns from text scripts, with JSON schema parsing for storyboard creation.
Planned integration for automated posting of generated videos to YouTube as part of the content scheduling roadmap.
SceneCraft MCP — Text → Storyboard → Video (Test Version)
Author: snippetWizard
SceneCraft MCP turns plain text into a visual plan (storyboard) and—optionally—an assembled vertical video. It exposes the pipeline both as Python modules and as an MCP tool so agentic clients can orchestrate it.
Text-to-Scene breakdown using an LLM (OpenAI, Ollama, or an offline Mock).
Pydantic-backed models for Shots, Scenes, and Storyboards.
Optional Stable Diffusion frame generation + MoviePy assembly into a vertical MP4.
File-based storage of generated storyboards.
MCP server (optional) so tools-savvy LLMs can call it directly.
This repository is a test version. More features are on the way, including cloud uploads and cross-platform social scheduling.
What’s MCP? The Model Context Protocol is a lightweight protocol that lets LLMs talk to local/remote tools securely and consistently. Here, we provide a simple MCP server exposing a “create_storyboard” tool.
Why this project? Planning shots is time-consuming. The idea came from wanting a zero-friction loop for solo creators: describe a scene → get a structured shot plan → (optionally) generate visuals → assemble a draft video. It’s a rapid prototyping lane for script-to-screen experiments.
Pipeline Overview (Files & Flow)
Input (your text/script)
Entry points:
examples/test_scene_local.py:1— generates a storyboard only.examples/script_to_video.py:1— full storyboard → frames → video demo.
Parse Script → Scenes
scenecraft_mcp/engine/script_parser.py:1parse_script(script)— minimal parser that treats the whole text as one scene (replaceable later with a real slugline parser).
Plan Shots (LLM)
scenecraft_mcp/engine/shot_planner.py:1plan_shots(scene_text, scene_number, style_preset)→list[Shot]_build_system_prompt(...),_build_user_prompt(...)craft prompt instructions.Uses
scenecraft_mcp/llm/factory.py:1→get_llm_client()to select provider.
Providers (implement
LLMClient):scenecraft_mcp/llm/base.py:1— abstract interface (complete_json,complete_text).scenecraft_mcp/llm/openai_client.py:1— calls OpenAI Chat Completions and parses strict JSON.scenecraft_mcp/llm/ollama_client.py:1— calls local Ollama/api/chatand parses JSON.scenecraft_mcp/llm/mock_client.py:1— offline, deterministic mock for local demos (default in.env).
Config:
scenecraft_mcp/config.py:1—LLMProviderenum (openai,ollama,mock) and env-driven settings.
Data Models & Storage
scenecraft_mcp/models.py:1— Pydantic models:Shot,Scene,Storyboard, enums (ShotType,CameraAngle, etc.).scenecraft_mcp/storage/repository.py:1— repo interface.scenecraft_mcp/storage/file_repository.py:1— JSON-based persistence under~/.scenecraft_mcp/projects/.scenecraft_mcp/utils/ids.py:1—generate_project_id()likeproj_ab12cd34.
Optional: Frame Generation (Stable Diffusion)
scenecraft_mcp/video/framegen_sd.py:1—SDFrameGenerator.generate_frame(...)Loads a Stable Diffusion pipeline (e.g.,
runwayml/stable-diffusion-v1-5) on CPU/GPU.Produces stylized vertical 9:16 PNGs per shot.
Optional: Video Assembly (MoviePy)
scenecraft_mcp/video/assembler.py:1—assemble_video(frames, output_path, fps=24)Resizes and concatenates the per-shot images into a vertical MP4 (requires ffmpeg).
MCP Server (Optional Integration)
scenecraft_mcp/mcp_server.py:1—build_server()with acreate_storyboard(script, title=None)tool.Expose storyboard creation to MCP-compatible hosts (e.g., Claude Desktop) once
mcpis installed.
Installation
Core (storyboard + MCP):
Optional (frames + video):
ffmpeg (required by MoviePy)
Python packages:
Tip: For NVIDIA GPUs, use the official PyTorch site to get the correct CUDA wheels: https://pytorch.org/get-started/locally/
Configuration
Copy .env (already included) and set a provider:
mockruns fully offline for predictable local demos.ollamarequiresollama serveand a pulled model likellama3.openairequires a validOPENAI_API_KEY.
Quickstart
Storyboard-only (offline by default):
Storyboard → Frames → Video (requires optional deps):
Outputs:
Storyboard JSON:
~/.scenecraft_mcp/projects/<project_id>.jsonFrames:
outputs/frames/*.pngVideo:
outputs/videos/<project_id>.mp4
Using the MCP Server (optional)
Connect this server to an MCP-compatible host (e.g., Claude Desktop). The tool create_storyboard accepts script and returns { project_id, scene_count, shot_count }.
What This Solves
Fast ideation: turn a draft description into a structured shot plan.
Consistent visual language: shot types, angles, durations captured as data, not prose.
Extensible pipeline: swap LLMs, models, or frame generators without changing the flow.
Automation-ready: MCP tool interface and file-based outputs are easy to orchestrate.
Roadmap (Test Version — Coming Soon)
Cloud uploads after video generation (S3/GCS/Azure).
Automation script to fetch by id/date and auto-post to YouTube and Instagram.
Schedule entire months of content in one pass.
Better text-to-scene parser for multi-scene scripts.
Transitions, captions/overlays, TTS/VO integration, music bed.
More MCP tools and richer schemas.
Follow along — more MCP projects are coming soon. Star and follow on GitHub: snippetWizard. Stay tuned!
File-by-File Quick Reference
scenecraft_mcp/engine/script_parser.py:1—parse_script(script)→ minimal single-scene dict.scenecraft_mcp/engine/shot_planner.py:1—plan_shots(...)calls LLM to outputShotPlan.scenecraft_mcp/llm/factory.py:1—get_llm_client()from env-configured provider.scenecraft_mcp/llm/openai_client.py:1— OpenAI JSON completions.scenecraft_mcp/llm/ollama_client.py:1— Ollama JSON completions.scenecraft_mcp/llm/mock_client.py:1— offline JSON synthesis for demos.scenecraft_mcp/models.py:1— core Pydantic models and enums.scenecraft_mcp/storage/file_repository.py:1— save/loadStoryboardto~/.scenecraft_mcp/projects/.scenecraft_mcp/video/framegen_sd.py:1— Stable Diffusion image generator per shot.scenecraft_mcp/video/assembler.py:1— MoviePy image sequence → MP4.scenecraft_mcp/mcp_server.py:1— MCP toolcreate_storyboard.examples/test_scene_local.py:1— storyboard demo.examples/script_to_video.py:1— full pipeline demo.
License
This project is licensed under the MIT License. See LICENSE for details.
Copyright (c) 2025 snippetWizard
This server cannot be installed
hybrid server
The server is able to function both locally and remotely, depending on the configuration or use case.
Converts plain text scripts into structured storyboards with shot breakdowns using LLMs, and optionally generates visual frames via Stable Diffusion and assembles them into vertical videos for rapid content prototyping.