Skip to main content
Glama

mcp-pinecone

# Index name import os import argparse from dotenv import load_dotenv load_dotenv() def get_pinecone_config(): parser = argparse.ArgumentParser(description="Pinecone MCP Configuration") parser.add_argument( "--index-name", default=None, help="Name of the Pinecone index to use. Will use environment variable PINECONE_INDEX_NAME if not provided.", ) parser.add_argument( "--api-key", default=None, help="API key for Pinecone. Will use environment variable PINECONE_API_KEY if not provided.", ) args = parser.parse_args() # Use command line arguments if provided, otherwise fall back to environment variables index_name = args.index_name or os.getenv("PINECONE_INDEX_NAME") api_key = args.api_key or os.getenv("PINECONE_API_KEY") # Set default index name if none provided if not index_name: index_name = "mcp-pinecone-index" print(f"No index name provided, using default: {index_name}") # Validate API key if not api_key: raise ValueError( "Pinecone API key is required. Provide it via --api-key argument or PINECONE_API_KEY environment variable" ) return index_name, api_key # Get configuration values PINECONE_INDEX_NAME, PINECONE_API_KEY = get_pinecone_config() # Validate configuration after loading if not PINECONE_INDEX_NAME or not PINECONE_API_KEY: raise ValueError( "Missing required configuration. Ensure PINECONE_INDEX_NAME and PINECONE_API_KEY " "are set either via environment variables or command line arguments." ) # Inference API model name INFERENCE_MODEL = "multilingual-e5-large" # Inference API embedding dimension INFERENCE_DIMENSION = 1024 # Export values for use in other modules __all__ = [ "PINECONE_INDEX_NAME", "PINECONE_API_KEY", "INFERENCE_MODEL", "INFERENCE_DIMENSION", ]

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/sirmews/mcp-pinecone'

If you have feedback or need assistance with the MCP directory API, please join our Discord server