Skip to main content
Glama

CSV Editor

by santoshray02

CSV Editor - AI-Powered CSV Processing via MCP

Python MCP License FastMCP Pandas smithery badge

Transform how AI assistants work with CSV data. CSV Editor is a high-performance MCP server that gives Claude, ChatGPT, and other AI assistants powerful data manipulation capabilities through simple commands.

๐ŸŽฏ Why CSV Editor?

The Problem

AI assistants struggle with complex data operations - they can read files but lack tools for filtering, transforming, analyzing, and validating CSV data efficiently.

The Solution

CSV Editor bridges this gap by providing AI assistants with 40+ specialized tools for CSV operations, turning them into powerful data analysts that can:

  • Clean messy datasets in seconds

  • Perform complex statistical analysis

  • Validate data quality automatically

  • Transform data with natural language commands

  • Track all changes with undo/redo capabilities

Key Differentiators

Feature

CSV Editor

Traditional Tools

AI Integration

Native MCP protocol

Manual operations

Auto-Save

Automatic with strategies

Manual save required

History Tracking

Full undo/redo with snapshots

Limited or none

Session Management

Multi-user isolated sessions

Single user

Data Validation

Built-in quality scoring

Separate tools needed

Performance

Handles GB+ files with chunking

Memory limitations

โšก Quick Demo

# Your AI assistant can now do this: "Load the sales data and remove duplicates" "Filter for Q4 2024 transactions over $10,000" "Calculate correlation between price and quantity" "Fill missing values with the median" "Export as Excel with the analysis" # All with automatic history tracking and undo capability!

๐Ÿš€ Quick Start (2 minutes)

Installing via Smithery

To install csv-editor for Claude Desktop automatically via Smithery:

npx -y @smithery/cli install @santoshray02/csv-editor --client claude

Fastest Installation (Recommended)

# Install uv if needed (one-time setup) curl -LsSf https://astral.sh/uv/install.sh | sh # Clone and run git clone https://github.com/santoshray02/csv-editor.git cd csv-editor uv sync uv run csv-editor

Configure Your AI Assistant

Add to ~/Library/Application Support/Claude/claude_desktop_config.json (macOS):

{ "mcpServers": { "csv-editor": { "command": "uv", "args": ["tool", "run", "csv-editor"], "env": { "CSV_MAX_FILE_SIZE": "1073741824" } } } }

See MCP_CONFIG.md for detailed configuration.

๐Ÿ’ก Real-World Use Cases

๐Ÿ“Š Data Analyst Workflow

# Morning: Load yesterday's data session = load_csv("daily_sales.csv") # Clean: Remove duplicates and fix types remove_duplicates(session_id) change_column_type("date", "datetime") fill_missing_values(strategy="median", columns=["revenue"]) # Analyze: Get insights get_statistics(columns=["revenue", "quantity"]) detect_outliers(method="iqr", threshold=1.5) get_correlation_matrix(min_correlation=0.5) # Report: Export cleaned data export_csv(format="excel", file_path="clean_sales.xlsx")

๐Ÿญ ETL Pipeline

# Extract from multiple sources load_csv_from_url("https://api.example.com/data.csv") # Transform with complex operations filter_rows(conditions=[ {"column": "status", "operator": "==", "value": "active"}, {"column": "amount", "operator": ">", "value": 1000} ]) add_column(name="quarter", formula="Q{(month-1)//3 + 1}") group_by_aggregate(group_by=["quarter"], aggregations={ "amount": ["sum", "mean"], "customer_id": "count" }) # Load to different formats export_csv(format="parquet") # For data warehouse export_csv(format="json") # For API

๐Ÿ” Data Quality Assurance

# Validate incoming data validate_schema(schema={ "customer_id": {"type": "integer", "required": True}, "email": {"type": "string", "pattern": r"^[^@]+@[^@]+\.[^@]+$"}, "age": {"type": "integer", "min": 0, "max": 120} }) # Quality scoring quality_report = check_data_quality() # Returns: overall_score, missing_data%, duplicates, outliers # Anomaly detection anomalies = find_anomalies(methods=["statistical", "pattern"])

๐ŸŽจ Core Features

Data Operations

  • Load & Export: CSV, JSON, Excel, Parquet, HTML, Markdown

  • Transform: Filter, sort, group, pivot, join

  • Clean: Remove duplicates, handle missing values, fix types

  • Calculate: Add computed columns, aggregations

Analysis Tools

  • Statistics: Descriptive stats, correlations, distributions

  • Outliers: IQR, Z-score, custom thresholds

  • Profiling: Complete data quality reports

  • Validation: Schema checking, quality scoring

Productivity Features

  • Auto-Save: Never lose work with configurable strategies

  • History: Full undo/redo with operation tracking

  • Sessions: Multi-user support with isolation

  • Performance: Stream processing for large files

๐Ÿ“š Available Tools

I/O Operations

  • load_csv - Load from file

  • load_csv_from_url - Load from URL

  • load_csv_from_content - Load from string

  • export_csv - Export to various formats

  • get_session_info - Session details

  • list_sessions - Active sessions

  • close_session - Cleanup

Data Manipulation

  • filter_rows - Complex filtering

  • sort_data - Multi-column sort

  • select_columns - Column selection

  • rename_columns - Rename columns

  • add_column - Add computed columns

  • remove_columns - Remove columns

  • update_column - Update values

  • change_column_type - Type conversion

  • fill_missing_values - Handle nulls

  • remove_duplicates - Deduplicate

Analysis

  • get_statistics - Statistical summary

  • get_column_statistics - Column stats

  • get_correlation_matrix - Correlations

  • group_by_aggregate - Group operations

  • get_value_counts - Frequency counts

  • detect_outliers - Find outliers

  • profile_data - Data profiling

Validation

  • validate_schema - Schema validation

  • check_data_quality - Quality metrics

  • find_anomalies - Anomaly detection

Auto-Save & History

  • configure_auto_save - Setup auto-save

  • get_auto_save_status - Check status

  • undo / redo - Navigate history

  • get_history - View operations

  • restore_to_operation - Time travel

โš™๏ธ Configuration

Environment Variables

Variable

Default

Description

CSV_MAX_FILE_SIZE

1GB

Maximum file size

CSV_SESSION_TIMEOUT

3600s

Session timeout

CSV_CHUNK_SIZE

10000

Processing chunk size

CSV_AUTO_SAVE

true

Enable auto-save

Auto-Save Strategies

CSV Editor automatically saves your work with configurable strategies:

  • Overwrite (default) - Update original file

  • Backup - Create timestamped backups

  • Versioned - Maintain version history

  • Custom - Save to specified location

# Configure auto-save configure_auto_save( strategy="backup", backup_dir="/backups", max_backups=10 )

๐Ÿ› ๏ธ Advanced Installation Options

Using pip

git clone https://github.com/santoshray02/csv-editor.git cd csv-editor pip install -e .

Using pipx (Global)

pipx install git+https://github.com/santoshray02/csv-editor.git

From GitHub (Recommended)

# Install latest version pip install git+https://github.com/santoshray02/csv-editor.git # Or using uv uv pip install git+https://github.com/santoshray02/csv-editor.git # Install specific version pip install git+https://github.com/santoshray02/csv-editor.git@v1.0.1

๐Ÿงช Development

Running Tests

uv run test # Run tests uv run test-cov # With coverage uv run all-checks # Format, lint, type-check, test

Project Structure

csv-editor/ โ”œโ”€โ”€ src/csv_editor/ # Core implementation โ”‚ โ”œโ”€โ”€ tools/ # MCP tool implementations โ”‚ โ”œโ”€โ”€ models/ # Data models โ”‚ โ””โ”€โ”€ server.py # MCP server โ”œโ”€โ”€ tests/ # Test suite โ”œโ”€โ”€ examples/ # Usage examples โ””โ”€โ”€ docs/ # Documentation

๐Ÿค Contributing

We welcome contributions! See CONTRIBUTING.md for guidelines.

Quick Contribution Guide

  1. Fork the repository

  2. Create a feature branch

  3. Make your changes with tests

  4. Run uv run all-checks

  5. Submit a pull request

๐Ÿ“ˆ Roadmap

  • SQL query interface

  • Real-time collaboration

  • Advanced visualizations

  • Machine learning integrations

  • Cloud storage support

  • Performance optimizations for 10GB+ files

๐Ÿ’ฌ Support

๐Ÿ“„ License

MIT License - see LICENSE file

๐Ÿ™ Acknowledgments

Built with:

  • FastMCP - Fast Model Context Protocol

  • Pandas - Data manipulation

  • NumPy - Numerical computing


Ready to supercharge your AI's data capabilities? Get started in 2 minutes โ†’

Related MCP Servers

  • A
    security
    F
    license
    A
    quality
    An MCP server that provides comprehensive Excel file operations, data analysis, and visualization capabilities for working with various spreadsheet formats like XLSX, CSV, and JSON.
    Last updated -
    8
    72
  • -
    security
    A
    license
    -
    quality
    An MCP server that manages chunking and reading of large responses, allowing tools to handle oversized data that would otherwise fail.
    Last updated -
    2
    GPL 3.0
  • -
    security
    F
    license
    -
    quality
    An MCP server that provides comprehensive PDF processing capabilities including text extraction, image extraction, table detection, annotation extraction, metadata retrieval, page rendering, and document structure analysis.
    Last updated -
    • Apple
  • -
    security
    F
    license
    -
    quality
    An MCP server that allows LLMs to read, analyze, and interact with Excel files through file operations, data discovery, and comprehensive analysis tools.
    Last updated -
    1

View all related MCP servers

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/santoshray02/csv-editor'

If you have feedback or need assistance with the MCP directory API, please join our Discord server