# OpenTelemetry & Observability Ecosystem
**How OpenTelemetry Relates to Grafana, Prometheus, Jaeger, and the Broader Observability Stack**
---
## π― **Quick Overview**
OpenTelemetry is **NOT** a competitor to Grafana/Prometheus - it's the **missing piece** that connects them all together!
```
βββββββββββββββββββ βββββββββββββββββββ βββββββββββββββββββ
β Application βββββΆβ OpenTelemetry βββββΆβ Backends β
β (Your Code) β β (Collection) β β (Storage/Query) β
βββββββββββββββββββ βββββββββββββββββββ βββββββββββββββββββ
β β
βΌ βΌ
βββββββββββββββββββ βββββββββββββββββββ
β Prometheus β β Grafana β
β (Metrics) β β (Visualization) β
βββββββββββββββββββ βββββββββββββββββββ
```
---
## π **OpenTelemetry + Prometheus**
### **Relationship: Complementary Partners**
**OpenTelemetry:** Generates and collects metrics from applications
**Prometheus:** Stores, queries, and alerts on those metrics
### **How They Work Together:**
```python
# 1. OpenTelemetry generates metrics
from opentelemetry import metrics
meter = metrics.get_meter("my-service")
requests_counter = meter.create_counter("http_requests_total")
requests_counter.add(1, {"method": "GET", "status": "200"})
# 2. Prometheus scrapes and stores them
# 3. You query in Prometheus: http_requests_total{method="GET"}
```
### **Integration Options:**
#### **Option A: Direct Prometheus Export**
```python
from opentelemetry.exporter.prometheus import PrometheusMetricReader
from opentelemetry.sdk.metrics import MeterProvider
# OpenTelemetry exports directly to Prometheus format
prometheus_reader = PrometheusMetricReader()
meter_provider = MeterProvider(metric_readers=[prometheus_reader])
```
#### **Option B: OpenTelemetry Collector β Prometheus**
```
Application β OTLP β Collector β Prometheus Remote Write β Prometheus
```
### **Prometheus Configuration:**
```yaml
# prometheus.yml
scrape_configs:
- job_name: 'opentelemetry'
static_configs:
- targets: ['localhost:9090'] # OpenTelemetry endpoint
scrape_interval: 15s
```
---
## π **OpenTelemetry + Grafana**
### **Relationship: Data Collection + Visualization**
**OpenTelemetry:** Collects telemetry data from applications
**Grafana:** Visualizes and creates dashboards from that data
### **Data Flow:**
```
Application β OpenTelemetry β Prometheus β Grafana Dashboard
β β β
Metrics Time-Series Beautiful Charts
Traces Storage & Dashboards
Logs
```
### **Grafana Integration:**
#### **1. Prometheus Data Source**
```json
{
"name": "Prometheus",
"type": "prometheus",
"url": "http://prometheus:9090",
"access": "proxy"
}
```
#### **2. Sample Grafana Query**
```promql
# Query OpenTelemetry metrics in Grafana
rate(http_requests_total[5m])
sum(http_request_duration_seconds_count) by (method)
```
#### **3. Dashboard Example**
```json
{
"title": "OpenTelemetry Service Metrics",
"panels": [
{
"title": "Request Rate",
"type": "graph",
"targets": [
{
"expr": "rate(http_requests_total[5m])",
"legendFormat": "{{method}} {{status}}"
}
]
}
]
}
```
---
## π **OpenTelemetry + Jaeger**
### **Relationship: Trace Generation + Trace Storage**
**OpenTelemetry:** Generates distributed traces
**Jaeger:** Stores and visualizes those traces
### **Trace Flow:**
```
Service A β Service B β Service C
β β β
ββββββ¬βββββ΄βββββ¬βββββ
βΌ βΌ
OpenTelemetry Traces
β
βΌ
Jaeger UI
(Trace Visualization)
```
### **Integration:**
```python
from opentelemetry.exporter.jaeger import JaegerExporter
from opentelemetry.sdk.trace import TracerProvider
from opentelemetry.sdk.trace.export import BatchSpanProcessor
# Configure Jaeger exporter
jaeger_exporter = JaegerExporter(
agent_host_name="localhost",
agent_port=6831,
)
tracer_provider = TracerProvider()
tracer_provider.add_span_processor(BatchSpanProcessor(jaeger_exporter))
```
---
## ποΈ **Complete Observability Stack**
### **The Full Picture:**
```
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β APPLICATION LAYER β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ€
β βββββββββββββββ βββββββββββββββ βββββββββββββββ β
β β FastAPI β β Database β β External β β
β β Service β β Service β β APIs β β
β βββββββββββββββ βββββββββββββββ βββββββββββββββ β
β β β β β
β βββββββββββββββββΌββββββββββββββββ β
β β β
βββββββββββββββββββββββββββββΌβββββββββββββββββββββββββββββββββ
β
βββββββββββββββββββββββββββββΌβββββββββββββββββββββββββββββββββ
β OPENTELEMETRY LAYER β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ€
β βββββββββββββββ βββββββββββββββ βββββββββββββββ β
β β Auto- β β Manual β β Custom β β
β β Instrumen- β β Instrumen- β β Instrumen- β β
β β tation β β tation β β tation β β
β βββββββββββββββ βββββββββββββββ βββββββββββββββ β
β β β β β
β βββββββββββββββββΌββββββββββββββββ β
β β β
βββββββββββββββββββββββββββββΌβββββββββββββββββββββββββββββββββ
β
βββββββββββββββββββββββββββββΌβββββββββββββββββββββββββββββββββ
β BACKEND LAYER β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ€
β βββββββββββββββ βββββββββββββββ βββββββββββββββ β
β β Prometheus β β Jaeger β β Loki β β
β β (Metrics) β β (Traces) β β (Logs) β β
β βββββββββββββββ βββββββββββββββ βββββββββββββββ β
β β β β β
β βββββββββββββββββΌββββββββββββββββ β
β β β
βββββββββββββββββββββββββββββΌβββββββββββββββββββββββββββββββββ
β
βββββββββββββββββββββββββββββΌβββββββββββββββββββββββββββββββββ
β VISUALIZATION LAYER β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ€
β βββββββββββββββ βββββββββββββββ βββββββββββββββ β
β β Grafana β β Prometheus β β Jaeger β β
β β Dashboards β β UI β β UI β β
β βββββββββββββββ βββββββββββββββ βββββββββββββββ β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
```
---
## π οΈ **OpenTelemetry Collector**
### **The "Glue" Component**
The **OpenTelemetry Collector** is a key piece that can receive data from OpenTelemetry and export to multiple backends:
```yaml
# otel-collector-config.yml
receivers:
otlp:
protocols:
grpc:
http:
processors:
batch:
exporters:
prometheus:
endpoint: "0.0.0.0:9090"
jaeger:
endpoint: "jaeger:14268"
logging:
loglevel: debug
service:
pipelines:
metrics:
receivers: [otlp]
processors: [batch]
exporters: [prometheus]
traces:
receivers: [otlp]
processors: [batch]
exporters: [jaeger]
```
### **Deployment Modes:**
#### **Agent Mode** (per host):
```
βββββββββββββββ βββββββββββββββ
β Application βββββΆβ Collector βββββΆ Backends
β β β (Agent) β
βββββββββββββββ βββββββββββββββ
```
#### **Gateway Mode** (central):
```
βββββββββββββββ βββββββββββββββ βββββββββββββββ
β Application βββββΆβ Collector βββββΆβ Collector βββββΆ Backends
β β β (Agent) β β (Gateway) β
βββββββββββββββ βββββββββββββββ βββββββββββββββ
```
---
## π **Comparison Table**
| Component | Purpose | Data Type | OpenTelemetry Role |
|-----------|---------|-----------|-------------------|
| **OpenTelemetry** | Generate & Collect | Metrics, Traces, Logs | **Source** (Data Collection) |
| **Prometheus** | Store & Query | Metrics | **Consumer** (Data Storage) |
| **Grafana** | Visualize | All Types | **Consumer** (Dashboards) |
| **Jaeger** | Store & Visualize | Traces | **Consumer** (Trace UI) |
| **Loki** | Store & Query | Logs | **Consumer** (Log Storage) |
| **Collector** | Route & Process | All Types | **Router** (Data Pipeline) |
---
## π **Real-World Examples**
### **Example 1: FastAPI Service with Full Stack**
```python
from fastapi import FastAPI
from opentelemetry.instrumentation.fastapi import FastAPIInstrumentor
from opentelemetry.exporter.prometheus import PrometheusMetricReader
from opentelemetry import metrics, trace
app = FastAPI()
# Setup OpenTelemetry
metrics.set_meter_provider(MeterProvider(metric_readers=[PrometheusMetricReader()]))
trace.set_tracer_provider(TracerProvider())
# Instrument FastAPI
FastAPIInstrumentor.instrument_app(app)
@app.get("/users")
async def get_users():
# Metrics automatically collected
# Traces automatically created
return [{"id": 1, "name": "Alice"}]
# Prometheus scrapes from /metrics endpoint
# Grafana visualizes the data
```
### **Example 2: MCP Server Integration**
```python
# In your MCP server
from opentelemetry import metrics, trace
meter = metrics.get_meter("mcp-server")
tracer = trace.get_tracer("mcp-server")
@mcp.tool()
async def analyze_code(ctx: Context, code: str) -> Dict[str, Any]:
with tracer.start_as_span("analyze_code") as span:
span.set_attribute("code.length", len(code))
# Your analysis logic
result = analyze(code)
# Record custom metrics
analysis_counter.add(1, {"tool": "analyze_code"})
return result
```
---
## π― **Why This Architecture Works**
### **1. Vendor Neutral**
- OpenTelemetry works with **any** backend
- Not locked into one vendor's ecosystem
- Can mix and match tools (Grafana + Prometheus, Grafana + Datadog, etc.)
### **2. Future-Proof**
- Standards-based (CNCF, W3C)
- Evolves with industry needs
- Backward compatible
### **3. Scalable**
- Collector can handle high throughput
- Multiple exporters possible
- Sampling for production optimization
### **4. Developer-Friendly**
- Auto-instrumentation reduces boilerplate
- Rich ecosystem of libraries
- Active community support
---
## π **Getting Started with Full Stack**
### **1. Install OpenTelemetry**
```bash
pip install opentelemetry-distro opentelemetry-instrumentation
pip install opentelemetry-exporter-prometheus
```
### **2. Setup Prometheus**
```yaml
# prometheus.yml
scrape_configs:
- job_name: 'my-service'
static_configs:
- targets: ['localhost:9090']
```
### **3. Setup Grafana**
- Add Prometheus as data source
- Create dashboards
- Set up alerts
### **4. Instrument Your Code**
```python
from opentelemetry.instrumentation.fastapi import FastAPIInstrumentor
app = FastAPI()
FastAPIInstrumentor.instrument_app(app)
```
### **5. View Results**
- **Metrics:** http://localhost:9090/metrics
- **Prometheus:** http://localhost:9090/graph
- **Grafana:** http://localhost:3000
---
## β **Common Questions**
### **Q: Do I need all these tools?**
**A:** No! Start with OpenTelemetry + Prometheus, add Grafana for visualization, Jaeger for traces.
### **Q: Can I use OpenTelemetry without Prometheus?**
**A:** Yes! OpenTelemetry exports to 40+ backends directly.
### **Q: Is this expensive to run?**
**A:** OpenTelemetry adds <5% overhead. Prometheus/Grafana are efficient and scalable.
### **Q: What about cloud-managed solutions?**
**A:** OpenTelemetry works with AWS X-Ray, Google Cloud Monitoring, Azure Monitor, etc.
---
## π **Further Reading**
- [**OpenTelemetry + Prometheus**](https://opentelemetry.io/docs/reference/specification/metrics/)
- [**Grafana + OpenTelemetry**](https://grafana.com/docs/grafana/latest/datasources/prometheus/)
- [**Collector Configuration**](https://opentelemetry.io/docs/collector/)
- [**Real-World Examples**](https://opentelemetry.io/docs/instrumentation/)
---
**OpenTelemetry is the **universal translator** for observability data** - it speaks every backend's language while letting you use the best tools for each job! π―