Skip to main content
Glama
sandraschi

Observability MCP Server

OPENTELEMETRY_ECOSYSTEM.mdβ€’16.2 kB
# OpenTelemetry & Observability Ecosystem **How OpenTelemetry Relates to Grafana, Prometheus, Jaeger, and the Broader Observability Stack** --- ## 🎯 **Quick Overview** OpenTelemetry is **NOT** a competitor to Grafana/Prometheus - it's the **missing piece** that connects them all together! ``` β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ Application │───▢│ OpenTelemetry │───▢│ Backends β”‚ β”‚ (Your Code) β”‚ β”‚ (Collection) β”‚ β”‚ (Storage/Query) β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β”‚ β–Ό β–Ό β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ Prometheus β”‚ β”‚ Grafana β”‚ β”‚ (Metrics) β”‚ β”‚ (Visualization) β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ ``` --- ## πŸ”— **OpenTelemetry + Prometheus** ### **Relationship: Complementary Partners** **OpenTelemetry:** Generates and collects metrics from applications **Prometheus:** Stores, queries, and alerts on those metrics ### **How They Work Together:** ```python # 1. OpenTelemetry generates metrics from opentelemetry import metrics meter = metrics.get_meter("my-service") requests_counter = meter.create_counter("http_requests_total") requests_counter.add(1, {"method": "GET", "status": "200"}) # 2. Prometheus scrapes and stores them # 3. You query in Prometheus: http_requests_total{method="GET"} ``` ### **Integration Options:** #### **Option A: Direct Prometheus Export** ```python from opentelemetry.exporter.prometheus import PrometheusMetricReader from opentelemetry.sdk.metrics import MeterProvider # OpenTelemetry exports directly to Prometheus format prometheus_reader = PrometheusMetricReader() meter_provider = MeterProvider(metric_readers=[prometheus_reader]) ``` #### **Option B: OpenTelemetry Collector β†’ Prometheus** ``` Application β†’ OTLP β†’ Collector β†’ Prometheus Remote Write β†’ Prometheus ``` ### **Prometheus Configuration:** ```yaml # prometheus.yml scrape_configs: - job_name: 'opentelemetry' static_configs: - targets: ['localhost:9090'] # OpenTelemetry endpoint scrape_interval: 15s ``` --- ## πŸ“Š **OpenTelemetry + Grafana** ### **Relationship: Data Collection + Visualization** **OpenTelemetry:** Collects telemetry data from applications **Grafana:** Visualizes and creates dashboards from that data ### **Data Flow:** ``` Application β†’ OpenTelemetry β†’ Prometheus β†’ Grafana Dashboard ↓ ↓ ↓ Metrics Time-Series Beautiful Charts Traces Storage & Dashboards Logs ``` ### **Grafana Integration:** #### **1. Prometheus Data Source** ```json { "name": "Prometheus", "type": "prometheus", "url": "http://prometheus:9090", "access": "proxy" } ``` #### **2. Sample Grafana Query** ```promql # Query OpenTelemetry metrics in Grafana rate(http_requests_total[5m]) sum(http_request_duration_seconds_count) by (method) ``` #### **3. Dashboard Example** ```json { "title": "OpenTelemetry Service Metrics", "panels": [ { "title": "Request Rate", "type": "graph", "targets": [ { "expr": "rate(http_requests_total[5m])", "legendFormat": "{{method}} {{status}}" } ] } ] } ``` --- ## πŸ” **OpenTelemetry + Jaeger** ### **Relationship: Trace Generation + Trace Storage** **OpenTelemetry:** Generates distributed traces **Jaeger:** Stores and visualizes those traces ### **Trace Flow:** ``` Service A β†’ Service B β†’ Service C β”‚ β”‚ β”‚ β””β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”˜ β–Ό β–Ό OpenTelemetry Traces β”‚ β–Ό Jaeger UI (Trace Visualization) ``` ### **Integration:** ```python from opentelemetry.exporter.jaeger import JaegerExporter from opentelemetry.sdk.trace import TracerProvider from opentelemetry.sdk.trace.export import BatchSpanProcessor # Configure Jaeger exporter jaeger_exporter = JaegerExporter( agent_host_name="localhost", agent_port=6831, ) tracer_provider = TracerProvider() tracer_provider.add_span_processor(BatchSpanProcessor(jaeger_exporter)) ``` --- ## πŸ—οΈ **Complete Observability Stack** ### **The Full Picture:** ``` β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ APPLICATION LAYER β”‚ β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€ β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ β”‚ β”‚ FastAPI β”‚ β”‚ Database β”‚ β”‚ External β”‚ β”‚ β”‚ β”‚ Service β”‚ β”‚ Service β”‚ β”‚ APIs β”‚ β”‚ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β”‚ β”‚ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ OPENTELEMETRY LAYER β”‚ β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€ β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ β”‚ β”‚ Auto- β”‚ β”‚ Manual β”‚ β”‚ Custom β”‚ β”‚ β”‚ β”‚ Instrumen- β”‚ β”‚ Instrumen- β”‚ β”‚ Instrumen- β”‚ β”‚ β”‚ β”‚ tation β”‚ β”‚ tation β”‚ β”‚ tation β”‚ β”‚ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β”‚ β”‚ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ BACKEND LAYER β”‚ β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€ β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ β”‚ β”‚ Prometheus β”‚ β”‚ Jaeger β”‚ β”‚ Loki β”‚ β”‚ β”‚ β”‚ (Metrics) β”‚ β”‚ (Traces) β”‚ β”‚ (Logs) β”‚ β”‚ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β”‚ β”‚ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ VISUALIZATION LAYER β”‚ β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€ β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ β”‚ β”‚ Grafana β”‚ β”‚ Prometheus β”‚ β”‚ Jaeger β”‚ β”‚ β”‚ β”‚ Dashboards β”‚ β”‚ UI β”‚ β”‚ UI β”‚ β”‚ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ ``` --- ## πŸ› οΈ **OpenTelemetry Collector** ### **The "Glue" Component** The **OpenTelemetry Collector** is a key piece that can receive data from OpenTelemetry and export to multiple backends: ```yaml # otel-collector-config.yml receivers: otlp: protocols: grpc: http: processors: batch: exporters: prometheus: endpoint: "0.0.0.0:9090" jaeger: endpoint: "jaeger:14268" logging: loglevel: debug service: pipelines: metrics: receivers: [otlp] processors: [batch] exporters: [prometheus] traces: receivers: [otlp] processors: [batch] exporters: [jaeger] ``` ### **Deployment Modes:** #### **Agent Mode** (per host): ``` β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ Application │───▢│ Collector │───▢ Backends β”‚ β”‚ β”‚ (Agent) β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ ``` #### **Gateway Mode** (central): ``` β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ Application │───▢│ Collector │───▢│ Collector │───▢ Backends β”‚ β”‚ β”‚ (Agent) β”‚ β”‚ (Gateway) β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ ``` --- ## πŸ“Š **Comparison Table** | Component | Purpose | Data Type | OpenTelemetry Role | |-----------|---------|-----------|-------------------| | **OpenTelemetry** | Generate & Collect | Metrics, Traces, Logs | **Source** (Data Collection) | | **Prometheus** | Store & Query | Metrics | **Consumer** (Data Storage) | | **Grafana** | Visualize | All Types | **Consumer** (Dashboards) | | **Jaeger** | Store & Visualize | Traces | **Consumer** (Trace UI) | | **Loki** | Store & Query | Logs | **Consumer** (Log Storage) | | **Collector** | Route & Process | All Types | **Router** (Data Pipeline) | --- ## πŸš€ **Real-World Examples** ### **Example 1: FastAPI Service with Full Stack** ```python from fastapi import FastAPI from opentelemetry.instrumentation.fastapi import FastAPIInstrumentor from opentelemetry.exporter.prometheus import PrometheusMetricReader from opentelemetry import metrics, trace app = FastAPI() # Setup OpenTelemetry metrics.set_meter_provider(MeterProvider(metric_readers=[PrometheusMetricReader()])) trace.set_tracer_provider(TracerProvider()) # Instrument FastAPI FastAPIInstrumentor.instrument_app(app) @app.get("/users") async def get_users(): # Metrics automatically collected # Traces automatically created return [{"id": 1, "name": "Alice"}] # Prometheus scrapes from /metrics endpoint # Grafana visualizes the data ``` ### **Example 2: MCP Server Integration** ```python # In your MCP server from opentelemetry import metrics, trace meter = metrics.get_meter("mcp-server") tracer = trace.get_tracer("mcp-server") @mcp.tool() async def analyze_code(ctx: Context, code: str) -> Dict[str, Any]: with tracer.start_as_span("analyze_code") as span: span.set_attribute("code.length", len(code)) # Your analysis logic result = analyze(code) # Record custom metrics analysis_counter.add(1, {"tool": "analyze_code"}) return result ``` --- ## 🎯 **Why This Architecture Works** ### **1. Vendor Neutral** - OpenTelemetry works with **any** backend - Not locked into one vendor's ecosystem - Can mix and match tools (Grafana + Prometheus, Grafana + Datadog, etc.) ### **2. Future-Proof** - Standards-based (CNCF, W3C) - Evolves with industry needs - Backward compatible ### **3. Scalable** - Collector can handle high throughput - Multiple exporters possible - Sampling for production optimization ### **4. Developer-Friendly** - Auto-instrumentation reduces boilerplate - Rich ecosystem of libraries - Active community support --- ## 🏁 **Getting Started with Full Stack** ### **1. Install OpenTelemetry** ```bash pip install opentelemetry-distro opentelemetry-instrumentation pip install opentelemetry-exporter-prometheus ``` ### **2. Setup Prometheus** ```yaml # prometheus.yml scrape_configs: - job_name: 'my-service' static_configs: - targets: ['localhost:9090'] ``` ### **3. Setup Grafana** - Add Prometheus as data source - Create dashboards - Set up alerts ### **4. Instrument Your Code** ```python from opentelemetry.instrumentation.fastapi import FastAPIInstrumentor app = FastAPI() FastAPIInstrumentor.instrument_app(app) ``` ### **5. View Results** - **Metrics:** http://localhost:9090/metrics - **Prometheus:** http://localhost:9090/graph - **Grafana:** http://localhost:3000 --- ## ❓ **Common Questions** ### **Q: Do I need all these tools?** **A:** No! Start with OpenTelemetry + Prometheus, add Grafana for visualization, Jaeger for traces. ### **Q: Can I use OpenTelemetry without Prometheus?** **A:** Yes! OpenTelemetry exports to 40+ backends directly. ### **Q: Is this expensive to run?** **A:** OpenTelemetry adds <5% overhead. Prometheus/Grafana are efficient and scalable. ### **Q: What about cloud-managed solutions?** **A:** OpenTelemetry works with AWS X-Ray, Google Cloud Monitoring, Azure Monitor, etc. --- ## πŸ“š **Further Reading** - [**OpenTelemetry + Prometheus**](https://opentelemetry.io/docs/reference/specification/metrics/) - [**Grafana + OpenTelemetry**](https://grafana.com/docs/grafana/latest/datasources/prometheus/) - [**Collector Configuration**](https://opentelemetry.io/docs/collector/) - [**Real-World Examples**](https://opentelemetry.io/docs/instrumentation/) --- **OpenTelemetry is the **universal translator** for observability data** - it speaks every backend's language while letting you use the best tools for each job! 🎯

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/sandraschi/observability-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server