Skip to main content
Glama

search_within_cbk

Search within specific Turkish Presidential Decrees using advanced query operators to find relevant articles without loading entire documents, returning only matching content sorted by relevance.

Instructions

Search for a keyword within a specific Presidential Decree's articles with advanced query operators.

This tool is optimized for large Presidential Decrees. Instead of loading the entire decree into context, it:

  1. Fetches the full content

  2. Splits it into individual articles (madde)

  3. Returns only the articles that match the search query

  4. Sorts results by relevance score (based on match count)

Query Syntax (operators must be uppercase):

  • Simple keyword: organize

  • Exact phrase: "organize suç"

  • AND operator: organize AND suç (both terms must be present)

  • OR operator: organize OR terör (at least one term must be present)

  • NOT operator: organize NOT terör (first term present, second must not be)

  • Combinations: "organize suç" AND ceza NOT terör

Returns formatted text with:

  • Article number and title

  • Relevance score (higher = more matches)

  • Full article content for matching articles

Example use cases:

  • Search for "organize" in CBK 1 (Judicial Reform)

  • Search for "suç AND ceza" in specific decree

  • Search for "devlet OR kamu" in administrative decrees

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
mevzuat_noYesThe Presidential Decree number to search within (e.g., '1', '32')
keywordYesSearch query supporting advanced operators: simple keyword ("organize"), exact phrase ("organize suç"), AND/OR/NOT operators (organize AND suç, suç OR ceza, organize NOT terör). Operators must be uppercase.
mevzuat_tertipNoDecree series from search results (e.g., '5')5
case_sensitiveNoWhether to match case when searching (default: False)
max_resultsNoMaximum number of matching articles to return (1-50, default: 25)

Implementation Reference

  • The handler function for the MCP tool 'search_within_cbk'. It validates inputs using Pydantic Fields, fetches Presidential Decree (CBK) content from mevzuat_client, uses search_articles_by_keyword to find matching articles, creates ArticleSearchResult, formats with format_search_results, and returns formatted matching articles or error messages.
    async def search_within_cbk( mevzuat_no: str = Field( ..., description="The Presidential Decree number to search within (e.g., '1', '32')" ), keyword: str = Field( ..., description='Search query supporting advanced operators: simple keyword ("organize"), exact phrase ("organize suç"), AND/OR/NOT operators (organize AND suç, suç OR ceza, organize NOT terör). Operators must be uppercase.' ), mevzuat_tertip: str = Field( "5", description="Decree series from search results (e.g., '5')" ), case_sensitive: bool = Field( False, description="Whether to match case when searching (default: False)" ), max_results: int = Field( 25, ge=1, le=50, description="Maximum number of matching articles to return (1-50, default: 25)" ) ) -> str: """ Search for a keyword within a specific Presidential Decree's articles with advanced query operators. This tool is optimized for large Presidential Decrees. Instead of loading the entire decree into context, it: 1. Fetches the full content 2. Splits it into individual articles (madde) 3. Returns only the articles that match the search query 4. Sorts results by relevance score (based on match count) Query Syntax (operators must be uppercase): - Simple keyword: organize - Exact phrase: "organize suç" - AND operator: organize AND suç (both terms must be present) - OR operator: organize OR terör (at least one term must be present) - NOT operator: organize NOT terör (first term present, second must not be) - Combinations: "organize suç" AND ceza NOT terör Returns formatted text with: - Article number and title - Relevance score (higher = more matches) - Full article content for matching articles Example use cases: - Search for "organize" in CBK 1 (Judicial Reform) - Search for "suç AND ceza" in specific decree - Search for "devlet OR kamu" in administrative decrees """ logger.info(f"Tool 'search_within_cbk' called: {mevzuat_no}, keyword: '{keyword}'") try: # Get full content content_result = await mevzuat_client.get_content( mevzuat_no=mevzuat_no, mevzuat_tur=19, # Cumhurbaşkanlığı Kararnamesi mevzuat_tertip=mevzuat_tertip ) if content_result.error_message: return f"Error fetching decree content: {content_result.error_message}" # Search within articles matches = search_articles_by_keyword( markdown_content=content_result.markdown_content, keyword=keyword, case_sensitive=case_sensitive, max_results=max_results ) result = ArticleSearchResult( mevzuat_no=mevzuat_no, mevzuat_tur=19, keyword=keyword, total_matches=len(matches), matching_articles=matches ) if len(matches) == 0: return f"No articles found containing '{keyword}' in CBK {mevzuat_no}" return format_search_results(result) except Exception as e: logger.exception(f"Error in tool 'search_within_cbk' for {mevzuat_no}") return f"An unexpected error occurred: {str(e)}"
  • Key helper function implementing the article-level search logic. Parses markdown into articles using split_into_articles, evaluates queries with AND/OR/NOT/exact phrases via _matches_query, generates previews, creates MaddeMatch objects, scores by match count, sorts, and limits results.
    def search_articles_by_keyword( markdown_content: str, keyword: str, case_sensitive: bool = False, max_results: int = 50 ) -> List[MaddeMatch]: """ Search for keyword within articles with support for advanced operators. Query syntax: - Simple keyword: "yatırımcı" - Exact phrase: "mali sıkıntı" - AND operator: yatırımcı AND tazmin - OR operator: yatırımcı OR müşteri - NOT operator: yatırımcı NOT kurum - Combinations: "mali sıkıntı" AND yatırımcı NOT kurum Args: markdown_content: Full legislation content in markdown keyword: Search query with optional operators (AND, OR, NOT, "exact phrase") case_sensitive: Whether to match case max_results: Maximum number of matching articles to return Returns: List of matching articles sorted by relevance (score based on match count) """ articles = split_into_articles(markdown_content) matches = [] for article in articles: content = article['madde_content'] # Check if article matches query matches_query, score = _matches_query(content, keyword, case_sensitive) if matches_query and score > 0: # Generate preview (first occurrence of a search term) search_content = content if case_sensitive else content.lower() search_keyword = keyword if case_sensitive else keyword.lower() # Try to find first quoted phrase or first word preview_terms = re.findall(r'"([^"]*)"', search_keyword) if not preview_terms: # Use first word (excluding operators) words = re.split(r'\s+(?:AND|OR|NOT)\s+', search_keyword) preview_terms = [w.strip() for w in words if w.strip() and w.strip() not in ('AND', 'OR', 'NOT')] preview = "" if preview_terms: first_term = preview_terms[0] if case_sensitive else preview_terms[0].lower() if first_term in search_content: keyword_pos = search_content.find(first_term) start = max(0, keyword_pos - 100) end = min(len(content), keyword_pos + len(first_term) + 100) preview = content[start:end] if start > 0: preview = "..." + preview if end < len(content): preview = preview + "..." if not preview: preview = content[:200] + "..." matches.append(MaddeMatch( madde_no=article['madde_no'], madde_title=article['madde_title'], madde_content=content, match_count=score, preview=preview )) # Sort by score (most relevant first) matches.sort(key=lambda x: x.match_count, reverse=True) return matches[:max_results]
  • Helper function to parse legislation markdown into structured articles (madde_no, title, content) using regex to detect headers like '**MADDE 1 –**'.
    def split_into_articles(markdown_content: str) -> List[Dict[str, str]]: """ Split markdown content into individual articles. Returns list of dicts with keys: madde_no, madde_title, madde_content """ articles = [] # Split by article headers: **MADDE X –** or **MADDE X**- or **Madde X –** # Regex to match all formats (case-insensitive for MADDE/Madde): # - **MADDE 1 –** (dash inside **) - used in some laws # - **MADDE 1**- (dash outside **) - used in regulations # - **Madde 1 –** (title case) - used in some laws like CMK pattern = r'\*\*(?:MADDE|Madde)\s+(\d+)(?:\s*[–-])?\*\*\s*-?' # Find all article positions matches = list(re.finditer(pattern, markdown_content)) if not matches: return [] for i, match in enumerate(matches): madde_no = match.group(1) start_pos = match.start() # Find end position (start of next article or end of content) if i < len(matches) - 1: end_pos = matches[i + 1].start() else: end_pos = len(markdown_content) # Extract full article content article_text = markdown_content[start_pos:end_pos].strip() # Try to extract title (usually follows the article number) # Pattern: **MADDE X –** (1) or **Title** after article number title = "" lines = article_text.split('\n', 3) if len(lines) > 1: # Check if second line is a title (surrounded by **) second_line = lines[1].strip() if second_line.startswith('**') and second_line.endswith('**'): title = second_line.strip('*').strip() articles.append({ 'madde_no': madde_no, 'madde_title': title, 'madde_content': article_text }) return articles
  • Helper function to format ArticleSearchResult into a readable string with article headers, titles, match counts, and full contents.
    def format_search_results(result: ArticleSearchResult) -> str: """Format search results as readable text.""" output = [] output.append(f"Keyword: '{result.keyword}'") output.append(f"Total matching articles: {result.total_matches}") output.append("") for i, match in enumerate(result.matching_articles, 1): output.append(f"=== MADDE {match.madde_no} ===") if match.madde_title: output.append(f"Title: {match.madde_title}") output.append(f"Matches: {match.match_count}") output.append("") output.append("Full content:") output.append(match.madde_content) output.append("") return "\n".join(output)
  • Pydantic models used internally by the tool: MaddeMatch for individual article matches and ArticleSearchResult aggregating results for formatting.
    class MaddeMatch(BaseModel): """A single article match result.""" madde_no: str # e.g., "1", "15", "142" madde_title: str # e.g., "Amaç", "Tanımlar" madde_content: str # Full article text match_count: int # Number of keyword occurrences preview: str # Short preview showing keyword in context class ArticleSearchResult(BaseModel): """Search results within a legislation.""" mevzuat_no: str mevzuat_tur: int keyword: str total_matches: int matching_articles: List[MaddeMatch]

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/saidsurucu/mevzuat-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server