Skip to main content
Glama

OpenAPI to MCP Server

by rykerwang
README.md3.33 kB
# OpenAPI to MCP Server [简体中文](README.zh-cn.md) | [English](README.md) This project spins up a Model Context Protocol (MCP) server directly from the supplied `openapi.yaml`, using `uv` for dependency management. Every HTTP endpoint becomes an MCP tool that AnythingLLM (or any MCP-aware client) can call. ## Quick Start 1. **Install dependencies** ```bash uv sync ``` 2. **Configure `openapi2mcpserver/config.yaml`** ```yaml base_url: "https://localhost:12001" verify_ssl: false openapi_path: "../openapi.yaml" # Optional, defaults to the repo root copy log_file: "../logs/openapi2mcpserver.log" # Optional, enables file logging log_level: "INFO" # Optional, supports DEBUG/INFO/WARNING/ERROR auth: mode: "basic" # Options: none/basic/bearer/header/query username: "your-username" password: "your-password" # basic_token: "cHJlLWVuY29kZWQtY3JlZHM=" # extra_headers: # X-API-Version: "1" # default_headers: # X-Request-Source: "mcp" ``` 3. **Start the MCP server** ```bash uv run openapi2mcpserver ``` ## Using This MCP Server in AnythingLLM The steps below target the AnythingLLM desktop plugin system and list the default paths for macOS and Windows. Create the file if it does not exist and replace the sample paths with the values on your machine. ### macOS 1. Open `~/Library/Application Support/anythingllm-desktop/storage/plugins/anythingllm_mcp_servers.json` 2. Add or merge the following configuration: ```json { "mcpServers": { "rhino-agent": { "command": "/Users/<你的用户名>/.local/bin/uv", "args": ["run", "--project", "/Users/<你的用户名>/workspace/AIProjects/openapi2mcpserver", "openapi2mcpserver"] } } } ``` ### Windows 1. Open `%APPDATA%\anythingllm-desktop\storage\plugins\anythingllm_mcp_servers.json` 2. If you use `uv.exe`, replace the path with the output of `where uv`, for example: ```json { "mcpServers": { "rhino-agent": { "command": "C:\\Users\\<YourUser>\\AppData\\Roaming\\Python\\Scripts\\uv.exe", "args": ["run", "--project", "C:\\Users\\<YourUser>\\workspace\\AIProjects\\openapi2mcpserver", "openapi2mcpserver"] } } } ``` Restart AnythingLLM (or reload plugins in settings) after saving, and you should see `rhino-agent` available in the tool list for your workspace. ## Highlights - Automatically parses every OpenAPI path and registers a matching MCP tool - Exposes `OpenAPI_GetSchema` to inspect `components.schemas` - Tool inputs cover path params, query params, headers, and request bodies - Flexible authentication (none/basic/bearer/custom header/query) plus global default headers - Structured logging to both console and file for easier LLM troubleshooting ## Layout ``` openapi2mcpserver/ __init__.py __main__.py client.py config.py openapi_loader.py server.py ``` ## Runtime Notes At startup the server ingests the OpenAPI description, builds JSON Schema input for every tool, and forwards calls to the upstream API. Responses (status, headers, and JSON/text bodies) are returned verbatim to the MCP client so you can chain follow-up actions such as polling task status.

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/rykerwang/openapi2mcpserver'

If you have feedback or need assistance with the MCP directory API, please join our Discord server