README.md•3.33 kB
# OpenAPI to MCP Server
[简体中文](README.zh-cn.md) | [English](README.md)
This project spins up a Model Context Protocol (MCP) server directly from the supplied `openapi.yaml`, using `uv` for dependency management. Every HTTP endpoint becomes an MCP tool that AnythingLLM (or any MCP-aware client) can call.
## Quick Start
1. **Install dependencies**
   ```bash
   uv sync
   ```
2. **Configure `openapi2mcpserver/config.yaml`**
   ```yaml
   base_url: "https://localhost:12001"
   verify_ssl: false
   openapi_path: "../openapi.yaml"           # Optional, defaults to the repo root copy
   log_file: "../logs/openapi2mcpserver.log" # Optional, enables file logging
   log_level: "INFO"                         # Optional, supports DEBUG/INFO/WARNING/ERROR
   auth:
     mode: "basic"                           # Options: none/basic/bearer/header/query
     username: "your-username"
     password: "your-password"
     # basic_token: "cHJlLWVuY29kZWQtY3JlZHM="
     # extra_headers:
     #   X-API-Version: "1"
   # default_headers:
   #   X-Request-Source: "mcp"
   ```
3. **Start the MCP server**
   ```bash
   uv run openapi2mcpserver
   ```
## Using This MCP Server in AnythingLLM
The steps below target the AnythingLLM desktop plugin system and list the default paths for macOS and Windows. Create the file if it does not exist and replace the sample paths with the values on your machine.
### macOS
1. Open `~/Library/Application Support/anythingllm-desktop/storage/plugins/anythingllm_mcp_servers.json`
2. Add or merge the following configuration:
   ```json
   {
     "mcpServers": {
       "rhino-agent": {
         "command": "/Users/<你的用户名>/.local/bin/uv",
         "args": ["run", "--project", "/Users/<你的用户名>/workspace/AIProjects/openapi2mcpserver", "openapi2mcpserver"]
       }
     }
   }
   ```
### Windows
1. Open `%APPDATA%\anythingllm-desktop\storage\plugins\anythingllm_mcp_servers.json`
2. If you use `uv.exe`, replace the path with the output of `where uv`, for example:
   ```json
   {
     "mcpServers": {
       "rhino-agent": {
         "command": "C:\\Users\\<YourUser>\\AppData\\Roaming\\Python\\Scripts\\uv.exe",
         "args": ["run", "--project", "C:\\Users\\<YourUser>\\workspace\\AIProjects\\openapi2mcpserver", "openapi2mcpserver"]
       }
     }
   }
   ```
Restart AnythingLLM (or reload plugins in settings) after saving, and you should see `rhino-agent` available in the tool list for your workspace.
## Highlights
- Automatically parses every OpenAPI path and registers a matching MCP tool
- Exposes `OpenAPI_GetSchema` to inspect `components.schemas`
- Tool inputs cover path params, query params, headers, and request bodies
- Flexible authentication (none/basic/bearer/custom header/query) plus global default headers
- Structured logging to both console and file for easier LLM troubleshooting
## Layout
```
openapi2mcpserver/
    __init__.py
    __main__.py
    client.py
    config.py
    openapi_loader.py
    server.py
```
## Runtime Notes
At startup the server ingests the OpenAPI description, builds JSON Schema input for every tool, and forwards calls to the upstream API. Responses (status, headers, and JSON/text bodies) are returned verbatim to the MCP client so you can chain follow-up actions such as polling task status.