Skip to main content
Glama

list-pods

Retrieve and filter your RunPod compute instances by GPU type, data center, name, and other parameters to manage cloud resources efficiently.

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
computeTypeNoFilter to only GPU or only CPU Pods
gpuTypeIdNoFilter to Pods with any of the listed GPU types
dataCenterIdNoFilter to Pods in any of the provided data centers
nameNoFilter to Pods with the provided name
includeMachineNoInclude information about the machine
includeNetworkVolumeNoInclude information about attached network volumes

Implementation Reference

  • The handler function for the 'list-pods' tool. It builds query parameters from input and calls the runpodRequest helper to fetch pods from RunPod API, returning JSON-formatted response as text content.
    async (params) => { // Construct query parameters const queryParams = new URLSearchParams(); if (params.computeType) queryParams.append('computeType', params.computeType); if (params.gpuTypeId) params.gpuTypeId.forEach((type) => queryParams.append('gpuTypeId', type)); if (params.dataCenterId) params.dataCenterId.forEach((dc) => queryParams.append('dataCenterId', dc) ); if (params.name) queryParams.append('name', params.name); if (params.includeMachine) queryParams.append('includeMachine', params.includeMachine.toString()); if (params.includeNetworkVolume) queryParams.append( 'includeNetworkVolume', params.includeNetworkVolume.toString() ); const queryString = queryParams.toString() ? `?${queryParams.toString()}` : ''; const result = await runpodRequest(`/pods${queryString}`); return { content: [ { type: 'text', text: JSON.stringify(result, null, 2), }, ], }; }
  • Input schema (Zod) for the 'list-pods' tool defining optional filters like computeType, gpuTypeId, dataCenterId, name, and inclusion flags.
    { computeType: z .enum(['GPU', 'CPU']) .optional() .describe('Filter to only GPU or only CPU Pods'), gpuTypeId: z .array(z.string()) .optional() .describe('Filter to Pods with any of the listed GPU types'), dataCenterId: z .array(z.string()) .optional() .describe('Filter to Pods in any of the provided data centers'), name: z .string() .optional() .describe('Filter to Pods with the provided name'), includeMachine: z .boolean() .optional() .describe('Include information about the machine'), includeNetworkVolume: z .boolean() .optional() .describe('Include information about attached network volumes'), },
  • src/index.ts:72-134 (registration)
    Registration of the 'list-pods' tool using McpServer.tool() method, specifying the tool name, input schema, and inline handler function.
    'list-pods', { computeType: z .enum(['GPU', 'CPU']) .optional() .describe('Filter to only GPU or only CPU Pods'), gpuTypeId: z .array(z.string()) .optional() .describe('Filter to Pods with any of the listed GPU types'), dataCenterId: z .array(z.string()) .optional() .describe('Filter to Pods in any of the provided data centers'), name: z .string() .optional() .describe('Filter to Pods with the provided name'), includeMachine: z .boolean() .optional() .describe('Include information about the machine'), includeNetworkVolume: z .boolean() .optional() .describe('Include information about attached network volumes'), }, async (params) => { // Construct query parameters const queryParams = new URLSearchParams(); if (params.computeType) queryParams.append('computeType', params.computeType); if (params.gpuTypeId) params.gpuTypeId.forEach((type) => queryParams.append('gpuTypeId', type)); if (params.dataCenterId) params.dataCenterId.forEach((dc) => queryParams.append('dataCenterId', dc) ); if (params.name) queryParams.append('name', params.name); if (params.includeMachine) queryParams.append('includeMachine', params.includeMachine.toString()); if (params.includeNetworkVolume) queryParams.append( 'includeNetworkVolume', params.includeNetworkVolume.toString() ); const queryString = queryParams.toString() ? `?${queryParams.toString()}` : ''; const result = await runpodRequest(`/pods${queryString}`); return { content: [ { type: 'text', text: JSON.stringify(result, null, 2), }, ], }; } );
  • Shared helper function 'runpodRequest' that makes authenticated HTTP requests to the RunPod API, used by the 'list-pods' handler and other tools.
    async function runpodRequest( endpoint: string, method: string = 'GET', body?: Record<string, unknown> ) { const url = `${API_BASE_URL}${endpoint}`; const headers = { Authorization: `Bearer ${API_KEY}`, 'Content-Type': 'application/json', }; const options: NodeFetchRequestInit = { method, headers, }; if (body && (method === 'POST' || method === 'PATCH')) { options.body = JSON.stringify(body); } try { const response = await fetch(url, options); if (!response.ok) { const errorText = await response.text(); throw new Error(`RunPod API Error: ${response.status} - ${errorText}`); } // Some endpoints might not return JSON const contentType = response.headers.get('content-type'); if (contentType && contentType.includes('application/json')) { return await response.json(); } return { success: true, status: response.status }; } catch (error) { console.error('Error calling RunPod API:', error); throw error; } }

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/runpod/runpod-mcp-ts'

If you have feedback or need assistance with the MCP directory API, please join our Discord server