Skip to main content
Glama

create-pod

Deploy GPU-accelerated containers on RunPod by specifying Docker images, GPU configurations, storage, ports, and environment variables for scalable compute workloads.

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
nameNoName for the pod
imageNameYesDocker image to use
cloudTypeNoSECURE or COMMUNITY cloud
gpuTypeIdsNoList of acceptable GPU types
gpuCountNoNumber of GPUs
containerDiskInGbNoContainer disk size in GB
volumeInGbNoVolume size in GB
volumeMountPathNoPath to mount the volume
portsNoPorts to expose (e.g., '8888/http', '22/tcp')
envNoEnvironment variables
dataCenterIdsNoList of data centers

Implementation Reference

  • The handler function for the 'create-pod' tool. It makes a POST request to the RunPod API '/pods' endpoint using the provided parameters and returns the JSON response formatted as MCP content.
    async (params) => { const result = await runpodRequest('/pods', 'POST', params); return { content: [ { type: 'text', text: JSON.stringify(result, null, 2), }, ], }; } );
  • Zod schema defining the input parameters for the 'create-pod' tool, including required fields like imageName and optional fields like gpuTypeIds, ports, env, etc.
    { name: z.string().optional().describe('Name for the pod'), imageName: z.string().describe('Docker image to use'), cloudType: z .enum(['SECURE', 'COMMUNITY']) .optional() .describe('SECURE or COMMUNITY cloud'), gpuTypeIds: z .array(z.string()) .optional() .describe('List of acceptable GPU types'), gpuCount: z.number().optional().describe('Number of GPUs'), containerDiskInGb: z .number() .optional() .describe('Container disk size in GB'), volumeInGb: z.number().optional().describe('Volume size in GB'), volumeMountPath: z.string().optional().describe('Path to mount the volume'), ports: z .array(z.string()) .optional() .describe("Ports to expose (e.g., '8888/http', '22/tcp')"), env: z.record(z.string()).optional().describe('Environment variables'), dataCenterIds: z .array(z.string()) .optional() .describe('List of data centers'), },
  • src/index.ts:179-221 (registration)
    The registration of the 'create-pod' tool using server.tool(), which includes the tool name, input schema, and inline handler function.
    server.tool( 'create-pod', { name: z.string().optional().describe('Name for the pod'), imageName: z.string().describe('Docker image to use'), cloudType: z .enum(['SECURE', 'COMMUNITY']) .optional() .describe('SECURE or COMMUNITY cloud'), gpuTypeIds: z .array(z.string()) .optional() .describe('List of acceptable GPU types'), gpuCount: z.number().optional().describe('Number of GPUs'), containerDiskInGb: z .number() .optional() .describe('Container disk size in GB'), volumeInGb: z.number().optional().describe('Volume size in GB'), volumeMountPath: z.string().optional().describe('Path to mount the volume'), ports: z .array(z.string()) .optional() .describe("Ports to expose (e.g., '8888/http', '22/tcp')"), env: z.record(z.string()).optional().describe('Environment variables'), dataCenterIds: z .array(z.string()) .optional() .describe('List of data centers'), }, async (params) => { const result = await runpodRequest('/pods', 'POST', params); return { content: [ { type: 'text', text: JSON.stringify(result, null, 2), }, ], }; } );
  • Helper function runpodRequest that performs authenticated API requests to RunPod, used by the create-pod handler and other tools.
    async function runpodRequest( endpoint: string, method: string = 'GET', body?: Record<string, unknown> ) { const url = `${API_BASE_URL}${endpoint}`; const headers = { Authorization: `Bearer ${API_KEY}`, 'Content-Type': 'application/json', }; const options: NodeFetchRequestInit = { method, headers, }; if (body && (method === 'POST' || method === 'PATCH')) { options.body = JSON.stringify(body); } try { const response = await fetch(url, options); if (!response.ok) { const errorText = await response.text(); throw new Error(`RunPod API Error: ${response.status} - ${errorText}`); } // Some endpoints might not return JSON const contentType = response.headers.get('content-type'); if (contentType && contentType.includes('application/json')) { return await response.json(); } return { success: true, status: response.status }; } catch (error) { console.error('Error calling RunPod API:', error); throw error; } }

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/runpod/runpod-mcp-ts'

If you have feedback or need assistance with the MCP directory API, please join our Discord server