MCPプロンプトテスター
エージェントがさまざまなプロバイダーで LLM プロンプトをテストできるようにするシンプルな MCP サーバー。
特徴
OpenAIとAnthropicモデルによるテストプロンプト
システムプロンプト、ユーザープロンプト、その他のパラメータを構成する
フォーマットされた応答またはエラーメッセージを取得する
.env ファイルのサポートによる簡単な環境設定
Related MCP server: MCP Anthropic Server
インストール
APIキーの設定
サーバーには、使用するプロバイダーのAPIキーが必要です。APIキーは2つの方法で設定できます。
オプション1: 環境変数
次の環境変数を設定します。
OPENAI_API_KEY- OpenAI API キーANTHROPIC_API_KEY- Anthropic APIキー
オプション 2: .env ファイル (推奨)
プロジェクトディレクトリまたはホームディレクトリに
.envという名前のファイルを作成します。次の形式で API キーを追加します。
サーバーはこれらのキーを自動的に検出して読み込みます
便宜上、サンプル テンプレートが.env.exampleとして含まれています。
使用法
stdio (デフォルト) または SSE トランスポートを使用してサーバーを起動します。
利用可能なツール
サーバーは、MCP 対応エージェントに対して次のツールを公開します。
1. list_providers
利用可能な LLM プロバイダーとそのデフォルト モデルを取得します。
パラメータ:
不要
応答例:
2. テスト比較
複数のプロンプトを並べて比較し、さまざまなプロバイダー、モデル、パラメータを同時にテストできます。
パラメータ:
comparisons(配列): 1 ~ 4 個の比較構成のリスト。各比較構成には次の内容が含まれます。provider(文字列): 使用する LLM プロバイダー ("openai" または "anthropic")model(文字列): モデル名system_prompt(文字列): システムプロンプト(モデルの指示)user_prompt(文字列): ユーザーのメッセージ/プロンプトtemperature(数値、オプション): ランダム性を制御するmax_tokens(整数、オプション): 生成するトークンの最大数top_p(数値、オプション):核サンプリングによる多様性の制御
使用例:
3. マルチターン会話のテスト
LLM プロバイダーとのマルチターン会話を管理し、ステートフル会話の作成と維持を可能にします。
モード:
start: 新しい会話を開始しますcontinue: 既存の会話を継続しますget: 会話履歴を取得するlist: すべてのアクティブな会話を一覧表示しますclose: 会話を閉じる
パラメータ:
mode(文字列): 操作モード ("start"、"continue"、"get"、"list"、または "close")conversation_id(文字列): 会話の一意のID (続行、取得、終了モードで必要)provider(文字列): LLM プロバイダー (開始モードに必須)model(文字列): モデル名(開始モードに必須)system_prompt(文字列): システムプロンプト(開始モードに必須)user_prompt(文字列): ユーザーメッセージ(開始モードと継続モードで使用)temperature(数値、オプション):モデルの温度パラメータmax_tokens(整数、オプション): 生成するトークンの最大数top_p(数値、オプション): Top-pサンプリングパラメータ
使用例(会話を始める):
使用例(会話を続ける):
エージェントの使用例
MCP クライアントを使用すると、エージェントは次のようなツールを使用できます。
MCPエージェント統合
MCP 権限を持つエージェントの場合、統合は簡単です。エージェントが LLM プロンプトをテストする必要がある場合は、次の手順に従ってください。
検出: エージェントは
list_providersを使用して利用可能なモデルとその機能を検出できます。シンプルなテスト: 簡単なテストには、単一の構成で
test_comparisonツールを使用します。比較:エージェントが異なるプロンプトやモデルを評価する必要がある場合、複数の構成で
test_comparison使用できます。ステートフルインタラクション: マルチターンの会話の場合、エージェントは
test_multiturn_conversationツールを使用して会話を管理できます。
これにより、エージェントは次のことが可能になります。
プロンプトのバリエーションをテストして、最も効果的なフレーズを見つけます
特定のタスクのさまざまなモデルを比較する
複数ターンの会話でコンテキストを維持する
温度やmax_tokensなどのパラメータを最適化する
開発中のトークンの使用状況とコストを追跡する
構成
環境変数を使用して、API キーとオプションのトレース構成を設定できます。
必要なAPIキー
OPENAI_API_KEY- OpenAI API キーANTHROPIC_API_KEY- Anthropic APIキー
オプションのLangfuseトレース
サーバーは、LLM呼び出しのトレースと監視のためにLangfuseをサポートしています。以下の設定はオプションです。
LANGFUSE_SECRET_KEY- Langfuse の秘密鍵LANGFUSE_PUBLIC_KEY- Langfuseの公開鍵LANGFUSE_HOST- LangfuseインスタンスのURL
Langfuse トレースを使用しない場合は、これらの設定を空のままにしておきます。