Skip to main content
Glama
TASK-004-nlp-content-processor.mdβ€’12.7 kB
--- document: Task Specification - Advanced NLP Content Processor version: 1.0.0 status: active author: Claude Code created: 2025-06-28 last_updated: 2025-06-28 --- # TASK-004: Advanced Natural Language Processing Content Processor ## πŸ“‹ Task Overview **Task ID**: TASK-004 **Title**: Advanced NLP Content Processor **Status**: pending **Owner**: Claude Desktop **Priority**: medium **Dependencies**: TASK-003 (enhanced widget system) **Created**: 2025-06-28 13:52 EST **Updated**: 2025-06-28 13:52 EST ## 🎯 Objective Develop an advanced natural language processing system that intelligently converts educational content into appropriate widget structures, with support for Portuguese (pt_br) and English, intent recognition, and content optimization. ## πŸ“Š Current Context ### Current NLP Capabilities - βœ… Basic markdown-to-widget conversion - βœ… Simple header detection (# patterns) - βœ… Text widget creation from paragraphs - ⚠️ Limited intent recognition - ❌ No content structure analysis - ❌ No educational content optimization ### Target Enhancement Areas ``` NLP Processing Pipeline: β”œβ”€β”€ Content Analysis β”‚ β”œβ”€β”€ Language detection (pt_br/en) β”‚ β”œβ”€β”€ Educational content classification β”‚ └── Structure recognition β”œβ”€β”€ Intent Recognition β”‚ β”œβ”€β”€ Learning objective extraction β”‚ β”œβ”€β”€ Content type identification β”‚ └── Interaction pattern detection β”œβ”€β”€ Widget Mapping Intelligence β”‚ β”œβ”€β”€ Content-to-widget optimization β”‚ β”œβ”€β”€ Educational flow design β”‚ └── Engagement enhancement └── Content Optimization β”œβ”€β”€ Readability analysis β”œβ”€β”€ Learning path creation └── Accessibility improvements ``` ## πŸ—οΈ 4-Phase Execution Plan ### Phase 1: Understand Scope, Plan Implementation, Define Deliverables #### Scope Analysis ``` Advanced NLP System Components: β”œβ”€β”€ Language Detection Service β”‚ β”œβ”€β”€ Portuguese (Brazil) support β”‚ β”œβ”€β”€ English language support β”‚ └── Mixed content handling β”œβ”€β”€ Educational Content Classifier β”‚ β”œβ”€β”€ Learning objective extraction β”‚ β”œβ”€β”€ Content difficulty assessment β”‚ └── Pedagogical pattern recognition β”œβ”€β”€ Intent Recognition Engine β”‚ β”œβ”€β”€ User goal identification β”‚ β”œβ”€β”€ Content purpose analysis β”‚ └── Interaction requirement detection β”œβ”€β”€ Smart Widget Mapper β”‚ β”œβ”€β”€ Content-to-widget optimization β”‚ β”œβ”€β”€ Educational flow design β”‚ └── Engagement pattern application β”œβ”€β”€ Content Structure Analyzer β”‚ β”œβ”€β”€ Document hierarchy detection β”‚ β”œβ”€β”€ Section relationship mapping β”‚ └── Cross-reference identification └── Optimization Engine β”œβ”€β”€ Readability enhancement β”œβ”€β”€ Learning path creation └── Accessibility compliance ``` #### Implementation Plan ``` 1. Language Detection & Analysis - Implement pt_br/en detection - Content classification algorithms - Educational pattern recognition 2. Intent Recognition System - Learning objective extraction - Content purpose identification - Interaction requirement analysis 3. Smart Widget Mapping - Advanced content-to-widget algorithms - Educational flow optimization - Engagement enhancement rules 4. Content Optimization - Readability analysis - Learning path generation - Accessibility improvements 5. Integration & Testing - Composition manager integration - Performance optimization - Accuracy validation ``` #### Deliverables ``` Primary Artifacts: β”œβ”€β”€ /src/nlp/ β”‚ β”œβ”€β”€ language-detector.ts β”‚ β”œβ”€β”€ content-classifier.ts β”‚ β”œβ”€β”€ intent-recognizer.ts β”‚ β”œβ”€β”€ widget-mapper.ts β”‚ β”œβ”€β”€ structure-analyzer.ts β”‚ └── optimization-engine.ts β”œβ”€β”€ /src/nlp/models/ β”‚ β”œβ”€β”€ educational-patterns.json β”‚ β”œβ”€β”€ intent-patterns.json β”‚ └── widget-mapping-rules.json β”œβ”€β”€ /src/nlp/processors/ β”‚ β”œβ”€β”€ portuguese-processor.ts β”‚ β”œβ”€β”€ english-processor.ts β”‚ └── mixed-content-processor.ts └── /tests/nlp/ β”œβ”€β”€ language-detection.test.js β”œβ”€β”€ intent-recognition.test.js β”œβ”€β”€ widget-mapping.test.js └── content-optimization.test.js Configuration: β”œβ”€β”€ /config/nlp/ β”‚ β”œβ”€β”€ language-models.json β”‚ β”œβ”€β”€ educational-taxonomies.json β”‚ β”œβ”€β”€ intent-patterns.json β”‚ └── optimization-rules.json Documentation: β”œβ”€β”€ /docs/guides/nlp-usage.md β”œβ”€β”€ /docs/api/nlp-api.md β”œβ”€β”€ /docs/examples/nlp-examples.md └── /docs/analysis/nlp-performance.md ``` **STOP AND WAIT** - Do not proceed to implementation **DO NOT** update knowledge graph **PAUSE** for explicit next-phase instructions ### Phase 2: Implementation #### Step 1: Create Artifacts ``` Implementation Order: 1. Language Detection Service (/src/nlp/language-detector.ts) - Portuguese (Brazil) detection - English language detection - Mixed content analysis - Confidence scoring 2. Educational Content Classifier (/src/nlp/content-classifier.ts) - Learning objective extraction - Content type identification - Difficulty level assessment - Pedagogical pattern recognition 3. Intent Recognition Engine (/src/nlp/intent-recognizer.ts) - User goal identification - Content purpose analysis - Interaction requirement detection - Context understanding 4. Smart Widget Mapper (/src/nlp/widget-mapper.ts) - Content-to-widget optimization - Educational flow design - Engagement pattern application - Widget sequence optimization 5. Structure Analyzer (/src/nlp/structure-analyzer.ts) - Document hierarchy detection - Section relationship mapping - Cross-reference identification - Navigation structure creation 6. Optimization Engine (/src/nlp/optimization-engine.ts) - Readability analysis and enhancement - Learning path creation - Accessibility compliance checking - Performance optimization 7. Language-Specific Processors - Portuguese processor with Brazilian patterns - English processor with educational focus - Mixed content handling 8. Model and Pattern Files - Educational pattern recognition models - Intent recognition patterns - Widget mapping rules and algorithms ``` #### Step 2: Validate ``` Testing Protocol: 1. Language Detection Testing - Portuguese content accuracy - English content accuracy - Mixed language handling - Performance benchmarking 2. Educational Classification Testing - Learning objective extraction accuracy - Content type identification precision - Difficulty assessment validation - Pattern recognition reliability 3. Intent Recognition Testing - Goal identification accuracy - Purpose analysis precision - Context understanding validation - Multi-intent content handling 4. Widget Mapping Testing - Content-to-widget optimization accuracy - Educational flow effectiveness - Engagement pattern application - Sequence optimization validation 5. Integration Testing - Composition manager integration - End-to-end workflow validation - Performance impact assessment - Error handling verification ``` **STOP AND WAIT** - Do not proceed to Phase 3 **DO NOT** update knowledge graph **PAUSE** for explicit next-phase instructions ### Phase 3: Documentation #### Step 1: Knowledge Graph Updates ``` Entities to Create: β”œβ”€β”€ Advanced NLP System Entity β”œβ”€β”€ Language Detection Service Entity β”œβ”€β”€ Content Classifier Entity β”œβ”€β”€ Intent Recognition Engine Entity β”œβ”€β”€ Widget Mapper Entity β”œβ”€β”€ Structure Analyzer Entity └── Optimization Engine Entity Relations to Establish: β”œβ”€β”€ NLP System β†’ Uses β†’ Language Detection β”œβ”€β”€ NLP System β†’ Uses β†’ Content Classifier β”œβ”€β”€ NLP System β†’ Uses β†’ Intent Recognition β”œβ”€β”€ Widget Mapper β†’ Optimizes β†’ Widget Creation β”œβ”€β”€ Structure Analyzer β†’ Analyzes β†’ Content Structure └── Optimization Engine β†’ Enhances β†’ Content Quality ``` #### Step 2: Progress Tracking ``` Documentation Updates: β”œβ”€β”€ /docs/progress/2025-06-28.md (update completion) β”œβ”€β”€ /docs/architecture/nlp-system.md (new) β”œβ”€β”€ /docs/guides/nlp-usage.md (comprehensive guide) β”œβ”€β”€ /docs/api/nlp-api.md (API documentation) └── /docs/examples/nlp-examples.md (usage examples) Status Updates: β”œβ”€β”€ Mark TASK-004 as COMPLETED β”œβ”€β”€ Document created files β”œβ”€β”€ Update NLP capabilities └── Synchronize all documentation ``` **STOP AND WAIT** - Do not proceed to Phase 4 **DO NOT** update knowledge graph **PAUSE** for explicit next-phase instructions ### Phase 4: Thorough Verification #### Validation Protocol ``` 1. Implementation Completeness Check β”œβ”€β”€ Verify all NLP components implemented β”œβ”€β”€ Check language support functional └── Validate optimization algorithms 2. System Validation β”œβ”€β”€ Test educational content processing β”œβ”€β”€ Validate intent recognition accuracy └── Confirm widget mapping optimization 3. Performance Validation β”œβ”€β”€ Processing speed benchmarks β”œβ”€β”€ Memory usage optimization └── Accuracy measurements 4. Documentation Validation β”œβ”€β”€ API documentation completeness β”œβ”€β”€ Usage guide accuracy └── Example validation ``` #### Verification Checklist ``` Per Component Verification: β–‘ Language Detection - pt_br/en support β–‘ Content Classifier - educational patterns β–‘ Intent Recognition - goal identification β–‘ Widget Mapper - optimization algorithms β–‘ Structure Analyzer - hierarchy detection β–‘ Optimization Engine - readability enhancement β–‘ Portuguese Processor - Brazilian patterns β–‘ English Processor - educational focus β–‘ Mixed Content Handler - multi-language β–‘ Performance benchmarks - acceptable β–‘ Documentation complete - comprehensive ``` ## πŸ”— Related Files ### Dependencies - `/src/composition-manager.ts` - Current NLP implementation - `/src/widgets/widget-factory.ts` - Widget creation system - Educational content analysis from previous sessions ### Analysis References - Widget analysis (6 types) for mapping rules - Educational content patterns - Portuguese language educational standards ## πŸ“ˆ Success Criteria ### Primary Goals 1. **Language Support**: Accurate pt_br and English processing 2. **Intent Recognition**: >85% accuracy in goal identification 3. **Widget Optimization**: Improved content-to-widget mapping 4. **Educational Enhancement**: Learning-focused content structuring ### Secondary Goals 1. **Performance**: <500ms processing time for typical content 2. **Accessibility**: WCAG 2.1 compliance suggestions 3. **Extensibility**: Easy addition of new languages/patterns 4. **Documentation**: Comprehensive guides and examples ## 🧠 NLP Processing Pipeline ### Content Analysis Flow ``` Input Content ↓ Language Detection ↓ Content Classification ↓ Intent Recognition ↓ Structure Analysis ↓ Widget Mapping ↓ Optimization ↓ Output Widgets ``` ### Educational Pattern Recognition ``` Learning Objectives: β”œβ”€β”€ Knowledge Transfer β”‚ β”œβ”€β”€ Factual information β†’ Text widgets β”‚ β”œβ”€β”€ Conceptual explanation β†’ Header + Text β”‚ └── Procedural steps β†’ List widgets β”œβ”€β”€ Skill Development β”‚ β”œβ”€β”€ Interactive exercises β†’ Hotspot widgets β”‚ β”œβ”€β”€ Visual examples β†’ Image/Gallery widgets β”‚ └── Practice scenarios β†’ Mixed widget sequences └── Assessment β”œβ”€β”€ Questions β†’ Interactive widgets β”œβ”€β”€ Self-evaluation β†’ List widgets └── Reflection prompts β†’ Text widgets ``` ### Portuguese Language Specifics ``` Brazilian Portuguese Patterns: β”œβ”€β”€ Educational Terminology β”‚ β”œβ”€β”€ Learning objectives ("objetivos de aprendizagem") β”‚ β”œβ”€β”€ Activities ("atividades") β”‚ └── Assessments ("avaliaΓ§Γ΅es") β”œβ”€β”€ Content Structure β”‚ β”œβ”€β”€ Introduction patterns β”‚ β”œβ”€β”€ Development sections β”‚ └── Conclusion markers └── Interaction Cues β”œβ”€β”€ Call-to-action phrases β”œβ”€β”€ Question indicators └── Reflection prompts ``` --- **Note**: This task creates a sophisticated NLP system specifically designed for educational content, with strong support for Portuguese (Brazilian) and English languages, enabling intelligent and pedagogically-sound content structuring.

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/rkm097git/euconquisto-composer-mcp-poc'

If you have feedback or need assistance with the MCP directory API, please join our Discord server