TASK-004-nlp-content-processor.mdβ’12.7 kB
---
document: Task Specification - Advanced NLP Content Processor
version: 1.0.0
status: active
author: Claude Code
created: 2025-06-28
last_updated: 2025-06-28
---
# TASK-004: Advanced Natural Language Processing Content Processor
## π Task Overview
**Task ID**: TASK-004
**Title**: Advanced NLP Content Processor
**Status**: pending
**Owner**: Claude Desktop
**Priority**: medium
**Dependencies**: TASK-003 (enhanced widget system)
**Created**: 2025-06-28 13:52 EST
**Updated**: 2025-06-28 13:52 EST
## π― Objective
Develop an advanced natural language processing system that intelligently converts educational content into appropriate widget structures, with support for Portuguese (pt_br) and English, intent recognition, and content optimization.
## π Current Context
### Current NLP Capabilities
- β
Basic markdown-to-widget conversion
- β
Simple header detection (# patterns)
- β
Text widget creation from paragraphs
- β οΈ Limited intent recognition
- β No content structure analysis
- β No educational content optimization
### Target Enhancement Areas
```
NLP Processing Pipeline:
βββ Content Analysis
β βββ Language detection (pt_br/en)
β βββ Educational content classification
β βββ Structure recognition
βββ Intent Recognition
β βββ Learning objective extraction
β βββ Content type identification
β βββ Interaction pattern detection
βββ Widget Mapping Intelligence
β βββ Content-to-widget optimization
β βββ Educational flow design
β βββ Engagement enhancement
βββ Content Optimization
βββ Readability analysis
βββ Learning path creation
βββ Accessibility improvements
```
## ποΈ 4-Phase Execution Plan
### Phase 1: Understand Scope, Plan Implementation, Define Deliverables
#### Scope Analysis
```
Advanced NLP System Components:
βββ Language Detection Service
β βββ Portuguese (Brazil) support
β βββ English language support
β βββ Mixed content handling
βββ Educational Content Classifier
β βββ Learning objective extraction
β βββ Content difficulty assessment
β βββ Pedagogical pattern recognition
βββ Intent Recognition Engine
β βββ User goal identification
β βββ Content purpose analysis
β βββ Interaction requirement detection
βββ Smart Widget Mapper
β βββ Content-to-widget optimization
β βββ Educational flow design
β βββ Engagement pattern application
βββ Content Structure Analyzer
β βββ Document hierarchy detection
β βββ Section relationship mapping
β βββ Cross-reference identification
βββ Optimization Engine
βββ Readability enhancement
βββ Learning path creation
βββ Accessibility compliance
```
#### Implementation Plan
```
1. Language Detection & Analysis
- Implement pt_br/en detection
- Content classification algorithms
- Educational pattern recognition
2. Intent Recognition System
- Learning objective extraction
- Content purpose identification
- Interaction requirement analysis
3. Smart Widget Mapping
- Advanced content-to-widget algorithms
- Educational flow optimization
- Engagement enhancement rules
4. Content Optimization
- Readability analysis
- Learning path generation
- Accessibility improvements
5. Integration & Testing
- Composition manager integration
- Performance optimization
- Accuracy validation
```
#### Deliverables
```
Primary Artifacts:
βββ /src/nlp/
β βββ language-detector.ts
β βββ content-classifier.ts
β βββ intent-recognizer.ts
β βββ widget-mapper.ts
β βββ structure-analyzer.ts
β βββ optimization-engine.ts
βββ /src/nlp/models/
β βββ educational-patterns.json
β βββ intent-patterns.json
β βββ widget-mapping-rules.json
βββ /src/nlp/processors/
β βββ portuguese-processor.ts
β βββ english-processor.ts
β βββ mixed-content-processor.ts
βββ /tests/nlp/
βββ language-detection.test.js
βββ intent-recognition.test.js
βββ widget-mapping.test.js
βββ content-optimization.test.js
Configuration:
βββ /config/nlp/
β βββ language-models.json
β βββ educational-taxonomies.json
β βββ intent-patterns.json
β βββ optimization-rules.json
Documentation:
βββ /docs/guides/nlp-usage.md
βββ /docs/api/nlp-api.md
βββ /docs/examples/nlp-examples.md
βββ /docs/analysis/nlp-performance.md
```
**STOP AND WAIT** - Do not proceed to implementation
**DO NOT** update knowledge graph
**PAUSE** for explicit next-phase instructions
### Phase 2: Implementation
#### Step 1: Create Artifacts
```
Implementation Order:
1. Language Detection Service (/src/nlp/language-detector.ts)
- Portuguese (Brazil) detection
- English language detection
- Mixed content analysis
- Confidence scoring
2. Educational Content Classifier (/src/nlp/content-classifier.ts)
- Learning objective extraction
- Content type identification
- Difficulty level assessment
- Pedagogical pattern recognition
3. Intent Recognition Engine (/src/nlp/intent-recognizer.ts)
- User goal identification
- Content purpose analysis
- Interaction requirement detection
- Context understanding
4. Smart Widget Mapper (/src/nlp/widget-mapper.ts)
- Content-to-widget optimization
- Educational flow design
- Engagement pattern application
- Widget sequence optimization
5. Structure Analyzer (/src/nlp/structure-analyzer.ts)
- Document hierarchy detection
- Section relationship mapping
- Cross-reference identification
- Navigation structure creation
6. Optimization Engine (/src/nlp/optimization-engine.ts)
- Readability analysis and enhancement
- Learning path creation
- Accessibility compliance checking
- Performance optimization
7. Language-Specific Processors
- Portuguese processor with Brazilian patterns
- English processor with educational focus
- Mixed content handling
8. Model and Pattern Files
- Educational pattern recognition models
- Intent recognition patterns
- Widget mapping rules and algorithms
```
#### Step 2: Validate
```
Testing Protocol:
1. Language Detection Testing
- Portuguese content accuracy
- English content accuracy
- Mixed language handling
- Performance benchmarking
2. Educational Classification Testing
- Learning objective extraction accuracy
- Content type identification precision
- Difficulty assessment validation
- Pattern recognition reliability
3. Intent Recognition Testing
- Goal identification accuracy
- Purpose analysis precision
- Context understanding validation
- Multi-intent content handling
4. Widget Mapping Testing
- Content-to-widget optimization accuracy
- Educational flow effectiveness
- Engagement pattern application
- Sequence optimization validation
5. Integration Testing
- Composition manager integration
- End-to-end workflow validation
- Performance impact assessment
- Error handling verification
```
**STOP AND WAIT** - Do not proceed to Phase 3
**DO NOT** update knowledge graph
**PAUSE** for explicit next-phase instructions
### Phase 3: Documentation
#### Step 1: Knowledge Graph Updates
```
Entities to Create:
βββ Advanced NLP System Entity
βββ Language Detection Service Entity
βββ Content Classifier Entity
βββ Intent Recognition Engine Entity
βββ Widget Mapper Entity
βββ Structure Analyzer Entity
βββ Optimization Engine Entity
Relations to Establish:
βββ NLP System β Uses β Language Detection
βββ NLP System β Uses β Content Classifier
βββ NLP System β Uses β Intent Recognition
βββ Widget Mapper β Optimizes β Widget Creation
βββ Structure Analyzer β Analyzes β Content Structure
βββ Optimization Engine β Enhances β Content Quality
```
#### Step 2: Progress Tracking
```
Documentation Updates:
βββ /docs/progress/2025-06-28.md (update completion)
βββ /docs/architecture/nlp-system.md (new)
βββ /docs/guides/nlp-usage.md (comprehensive guide)
βββ /docs/api/nlp-api.md (API documentation)
βββ /docs/examples/nlp-examples.md (usage examples)
Status Updates:
βββ Mark TASK-004 as COMPLETED
βββ Document created files
βββ Update NLP capabilities
βββ Synchronize all documentation
```
**STOP AND WAIT** - Do not proceed to Phase 4
**DO NOT** update knowledge graph
**PAUSE** for explicit next-phase instructions
### Phase 4: Thorough Verification
#### Validation Protocol
```
1. Implementation Completeness Check
βββ Verify all NLP components implemented
βββ Check language support functional
βββ Validate optimization algorithms
2. System Validation
βββ Test educational content processing
βββ Validate intent recognition accuracy
βββ Confirm widget mapping optimization
3. Performance Validation
βββ Processing speed benchmarks
βββ Memory usage optimization
βββ Accuracy measurements
4. Documentation Validation
βββ API documentation completeness
βββ Usage guide accuracy
βββ Example validation
```
#### Verification Checklist
```
Per Component Verification:
β‘ Language Detection - pt_br/en support
β‘ Content Classifier - educational patterns
β‘ Intent Recognition - goal identification
β‘ Widget Mapper - optimization algorithms
β‘ Structure Analyzer - hierarchy detection
β‘ Optimization Engine - readability enhancement
β‘ Portuguese Processor - Brazilian patterns
β‘ English Processor - educational focus
β‘ Mixed Content Handler - multi-language
β‘ Performance benchmarks - acceptable
β‘ Documentation complete - comprehensive
```
## π Related Files
### Dependencies
- `/src/composition-manager.ts` - Current NLP implementation
- `/src/widgets/widget-factory.ts` - Widget creation system
- Educational content analysis from previous sessions
### Analysis References
- Widget analysis (6 types) for mapping rules
- Educational content patterns
- Portuguese language educational standards
## π Success Criteria
### Primary Goals
1. **Language Support**: Accurate pt_br and English processing
2. **Intent Recognition**: >85% accuracy in goal identification
3. **Widget Optimization**: Improved content-to-widget mapping
4. **Educational Enhancement**: Learning-focused content structuring
### Secondary Goals
1. **Performance**: <500ms processing time for typical content
2. **Accessibility**: WCAG 2.1 compliance suggestions
3. **Extensibility**: Easy addition of new languages/patterns
4. **Documentation**: Comprehensive guides and examples
## π§ NLP Processing Pipeline
### Content Analysis Flow
```
Input Content
β
Language Detection
β
Content Classification
β
Intent Recognition
β
Structure Analysis
β
Widget Mapping
β
Optimization
β
Output Widgets
```
### Educational Pattern Recognition
```
Learning Objectives:
βββ Knowledge Transfer
β βββ Factual information β Text widgets
β βββ Conceptual explanation β Header + Text
β βββ Procedural steps β List widgets
βββ Skill Development
β βββ Interactive exercises β Hotspot widgets
β βββ Visual examples β Image/Gallery widgets
β βββ Practice scenarios β Mixed widget sequences
βββ Assessment
βββ Questions β Interactive widgets
βββ Self-evaluation β List widgets
βββ Reflection prompts β Text widgets
```
### Portuguese Language Specifics
```
Brazilian Portuguese Patterns:
βββ Educational Terminology
β βββ Learning objectives ("objetivos de aprendizagem")
β βββ Activities ("atividades")
β βββ Assessments ("avaliaΓ§Γ΅es")
βββ Content Structure
β βββ Introduction patterns
β βββ Development sections
β βββ Conclusion markers
βββ Interaction Cues
βββ Call-to-action phrases
βββ Question indicators
βββ Reflection prompts
```
---
**Note**: This task creates a sophisticated NLP system specifically designed for educational content, with strong support for Portuguese (Brazilian) and English languages, enabling intelligent and pedagogically-sound content structuring.