Skip to main content
Glama
token-consumption-and-alternative-sequence.md10.2 kB
# Token Consumption Analysis & Alternative Sequence Evaluation **Date**: July 11, 2025 **Analysis**: Current vs Alternative Approach --- ## 1. Token Consumption Analysis ### Current Prevention-First Approach #### Token Count Breakdown: - **API Requirements Catalog**: ~14,593 characters (~3,650 tokens) - **Widget Catalog**: ~8,000 characters (~2,000 tokens) - **Educational Guidance**: ~4,000 characters (~1,000 tokens) - **Instructions**: ~3,000 characters (~750 tokens) - **Total per guidance request**: ~**8,400 tokens** #### Token Consumption Concerns ✅/❌ **Pros:** - ✅ **One-time cost**: Guidance consumed once per lesson creation - ✅ **Prevention value**: Prevents multiple retry cycles (saves tokens) - ✅ **Higher success rate**: Less validation/correction rounds **Cons:** - ❌ **High upfront cost**: ~8,400 tokens per lesson request - ❌ **Information overload**: Claude receives all widget specs even if only using 3-4 - ❌ **Static delivery**: Same large payload regardless of lesson complexity #### Real Token Impact: **Single lesson creation:** - Current: 8,400 (guidance) + 2,000 (content) + 1,500 (validation/format) = **~12,000 tokens** - With retries: 8,400 + 2,000 + (3 x 1,500 retries) = **~15,000 tokens** **Assessment**: ❌ **YES, unnecessarily high token consumption** --- ## 2. Alternative Sequence Feasibility Analysis ### Proposed Just-In-Time (JIT) Sequence ``` a. Understand user's request [~500 tokens] b. Obtain overall guidance [~1,500 tokens] c. Create content as Claude sees fit [~2,000 tokens] d. Analyze content for widget mapping [~800 tokens] e. Map content segments to widget types [~600 tokens] f. Get detailed requirements for selected widgets [~2,000 tokens] g. Format content per widget requirements [~1,000 tokens] h. Create final composition [~800 tokens] i. Save via API [~400 tokens] j. Display in Composer [~300 tokens] ``` **Total estimated tokens**: ~**9,900 tokens** (17% reduction) ### Feasibility Assessment: ✅ **HIGHLY FEASIBLE** #### Technical Implementation: **Step b - Overall Guidance (Lightweight)** ```javascript getOverallGuidance() { return { availableWidgetTypes: ['head-1', 'text-1', 'quiz-1', 'flashcards-1', 'image-1', 'video-1', 'list-1', 'gallery-1', 'hotspots-1'], educationalPrinciples: ['cognitive load balance', 'learning progression', 'assessment integration'], lengthGuidelines: { lessonDuration: 50, textMinimum: 20, quizQuestions: '1-10' }, workflow: 'Create content freely, then we\'ll map to optimal widgets' }; } ``` **Step d-e - Content Analysis & Widget Mapping** ```javascript analyzeContentForWidgets(claudeContent) { // Parse Claude's content to identify: // - Introduction sections → head-1 // - Explanatory text → text-1 // - Questions → quiz-1 // - Term definitions → flashcards-1 // - Lists → list-1 // - Images needed → image-1 // - Interactive elements → hotspots-1 } ``` **Step f - Just-In-Time Widget Requirements** ```javascript getWidgetRequirements(selectedWidgetTypes) { // Return ONLY the API requirements for widgets actually being used // Instead of all 9 widget types, return only 3-4 needed return selectedWidgetTypes.map(type => this.apiFieldMappings[type]); } ``` #### Advantages of JIT Approach: **🎯 Token Efficiency** - ✅ **Selective guidance**: Only widget requirements actually needed - ✅ **Smaller payloads**: ~2,000 tokens vs ~8,400 tokens for guidance - ✅ **Content-driven**: Requirements based on what Claude created **🧠 Cognitive Benefits** - ✅ **Natural creation**: Claude creates content without format constraints - ✅ **Cleaner separation**: Content creation vs technical formatting - ✅ **Less overwhelm**: Claude focuses on education first, format second **🔧 Technical Benefits** - ✅ **Intelligent mapping**: System analyzes content to suggest optimal widgets - ✅ **Precise requirements**: Only relevant API specifications provided - ✅ **Adaptive**: Different requirements for different lesson types #### Potential Challenges: **⚠️ Content Analysis Complexity** - Need sophisticated content parsing to map to widgets - Risk of suboptimal widget selection by analysis algorithm **⚠️ Two-Stage Validation** - Content validation + Widget format validation - Potential for more complex error handling **⚠️ Multi-Step Dependencies** - Steps d-g depend on successful content analysis - Failure in widget mapping affects downstream steps --- ## 3. Recommended Implementation Strategy ### Hybrid Approach: **Smart JIT with Fallback** #### Phase 1: Lightweight Guidance ```javascript getSmartGuidance(userPrompt) { // Analyze user prompt to predict likely widgets needed const predictedWidgets = this.predictWidgetsFromPrompt(userPrompt); return { basicGuidelines: { /* educational principles, length requirements */ }, suggestedWidgets: predictedWidgets, detailedRequirements: null // Provided later in JIT fashion }; } ``` #### Phase 2: Content Creation ```javascript // Claude creates content naturally without overwhelming constraints createEducationalContent(prompt, basicGuidelines); ``` #### Phase 3: Intelligent Widget Mapping ```javascript analyzeAndMapContent(claudeContent) { return { suggestedMapping: [ { contentSegment: "Introduction paragraph", recommendedWidget: "text-1" }, { contentSegment: "Question about photosynthesis", recommendedWidget: "quiz-1" }, { contentSegment: "Term definitions", recommendedWidget: "flashcards-1" } ], confidence: 0.95 }; } ``` #### Phase 4: JIT Widget Requirements ```javascript getSpecificWidgetRequirements(mappedWidgets) { // Return only the precise API requirements for selected widgets return mappedWidgets.map(widget => ({ type: widget.type, apiRequirements: this.apiFieldMappings[widget.type], contentSegment: widget.contentSegment })); } ``` ### Implementation Breakdown: **New Tools Structure:** 1. **`get_smart_guidance`** - Lightweight educational guidance (~1,500 tokens) 2. **`analyze_content_for_widgets`** - Intelligent content→widget mapping (~800 tokens) 3. **`get_widget_requirements`** - JIT API requirements for selected widgets (~2,000 tokens) 4. **`format_for_composer`** - Enhanced to use specific requirements 5. **`save_composition_api`** - Unchanged 6. **`open_composition_editor`** - Unchanged **Token Savings:** - **Current**: ~8,400 tokens for comprehensive guidance - **JIT Hybrid**: ~4,300 tokens distributed across multiple efficient calls - **Savings**: ~**48% reduction** in guidance tokens --- ## 4. Technical Implementation Plan ### Tool Modifications Required: #### 1. New: `get_smart_guidance` Tool ```javascript // Replaces massive get_lesson_guidance with intelligent lightweight version async getSmartGuidance(args) { const { prompt, subject, gradeLevel } = args; // Predict likely widgets from prompt analysis const predictedWidgets = this.predictWidgetsFromPrompt(prompt, subject); return { basicGuidelines: this.getBasicEducationalGuidelines(subject, gradeLevel), suggestedWidgets: predictedWidgets, workflow: "Create educational content naturally, then we'll optimize widget mapping" }; } ``` #### 2. New: `analyze_content_for_widgets` Tool ```javascript async analyzeContentForWidgets(args) { const { claudeContent } = args; const mapping = this.intelligentWidgetMapper.analyzeContent(claudeContent); return { suggestedMapping: mapping, rationale: "Based on content analysis and educational best practices" }; } ``` #### 3. New: `get_widget_requirements` Tool ```javascript async getWidgetRequirements(args) { const { selectedWidgets } = args; // Return ONLY requirements for widgets actually being used const requirements = selectedWidgets.map(widget => this.apiRequirements.getSpecificRequirements(widget.type) ); return { widgetRequirements: requirements }; } ``` ### Workflow Comparison: #### Current Workflow: ``` 1. get_lesson_guidance [8,400 tokens] → Complete specifications 2. validate_lesson_data → Validation 3. format_for_composer → Field conversion 4. save_composition_api → API save 5. open_composition_editor → Navigation ``` #### JIT Workflow: ``` 1. get_smart_guidance [1,500 tokens] → Basic guidelines 2. analyze_content_for_widgets [800 tokens] → Widget mapping 3. get_widget_requirements [2,000 tokens] → Specific API requirements 4. validate_lesson_data → Validation 5. format_for_composer → Minimal conversion needed 6. save_composition_api → API save 7. open_composition_editor → Navigation ``` --- ## 5. Recommendation ### ✅ **IMPLEMENT JIT HYBRID APPROACH** **Rationale:** 1. **Token Efficiency**: ~48% reduction in guidance tokens 2. **Better UX**: Claude creates content naturally without overwhelming constraints 3. **Precision**: API requirements provided only for widgets actually used 4. **Maintainability**: Smaller, focused tool responsibilities 5. **Scalability**: Easily add new widgets without increasing base guidance size ### Implementation Priority: 1. **Phase 1**: Implement basic JIT tools (1-2 days) 2. **Phase 2**: Add intelligent content analysis (2-3 days) 3. **Phase 3**: Optimize widget prediction algorithms (1-2 days) 4. **Phase 4**: Performance testing and refinement (1 day) ### Expected Benefits: - **48% token reduction** in guidance phase - **More natural content creation** for Claude - **Precise API requirements** delivered just-in-time - **Better maintainability** with focused tool responsibilities - **Improved scalability** for adding new widget types The proposed JIT approach is not only feasible but superior to the current prevention-first approach in both token efficiency and user experience. --- **Analysis Complete**: July 11, 2025 **Recommendation**: ✅ Implement JIT Hybrid Approach **Expected Token Savings**: 48% in guidance phase **Implementation Effort**: ~1 week for complete migration

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/rkm097git/euconquisto-composer-mcp-poc'

If you have feedback or need assistance with the MCP directory API, please join our Discord server