Skip to main content
Glama

s3_object_upload

Upload files to Amazon S3 buckets using base64-encoded content. Specify bucket name, object key, and file content for cloud storage management.

Instructions

Upload an object to S3

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
bucket_nameYesName of the S3 bucket
object_keyYesKey/path of the object in the bucket
file_contentYesBase64 encoded file content for upload

Implementation Reference

  • Executes the S3 object upload by decoding base64 file content and using boto3 s3_client.upload_fileobj to upload to the specified bucket and key.
    elif name == "s3_object_upload": response = s3_client.upload_fileobj( io.BytesIO(base64.b64decode(arguments["file_content"])), arguments["bucket_name"], arguments["object_key"])
  • Defines the Tool object with input schema for s3_object_upload, specifying required parameters: bucket_name, object_key, and base64-encoded file_content.
    Tool( name="s3_object_upload", description="Upload an object to S3", inputSchema={ "type": "object", "properties": { "bucket_name": { "type": "string", "description": "Name of the S3 bucket" }, "object_key": { "type": "string", "description": "Key/path of the object in the bucket" }, "file_content": { "type": "string", "description": "Base64 encoded file content for upload" } }, "required": ["bucket_name", "object_key", "file_content"] } ),
  • Registers the s3_object_upload tool (among others) by returning the list from get_aws_tools() in response to list_tools() calls.
    async def list_tools() -> list[Tool]: """List available AWS tools""" logger.debug("Handling list_tools request") return get_aws_tools()

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/rishikavikondala/mcp-server-aws'

If you have feedback or need assistance with the MCP directory API, please join our Discord server