Skip to main content
Glama

MCP Server Boilerplate

by ricleedo

mongo-count-documents

Count documents in a MongoDB collection using database name, collection name, and optional query filters to get accurate document totals for data analysis and monitoring.

Instructions

Count documents in a MongoDB collection

Input Schema

NameRequiredDescriptionDefault
collectionYesCollection name
databaseYesDatabase name
filterNoQuery filter as JSON object (optional)

Input Schema (JSON Schema)

{ "properties": { "collection": { "description": "Collection name", "type": "string" }, "database": { "description": "Database name", "type": "string" }, "filter": { "additionalProperties": {}, "description": "Query filter as JSON object (optional)", "type": "object" } }, "required": [ "database", "collection" ], "type": "object" }

Implementation Reference

  • Handler function that connects to the MongoDB database, retrieves the specified collection, counts the documents matching the optional filter using countDocuments(), and returns the count in a formatted text response.
    async ({ database: dbName, collection: collectionName, filter = {} }) => { try { const db = await ensureConnection(dbName); const collection: Collection = db.collection(collectionName); const count = await collection.countDocuments(filter); return { content: [ { type: "text", text: `Found ${count} document(s) matching the filter`, }, ], }; } catch (error) { throw new Error(`Failed to count documents: ${error instanceof Error ? error.message : 'Unknown error'}`); } }
  • Zod input schema defining required 'database' and 'collection' strings, and optional 'filter' object for querying documents.
    { database: z.string().describe("Database name"), collection: z.string().describe("Collection name"), filter: z.record(z.any()).optional().describe("Query filter as JSON object (optional)"), },
  • src/index.ts:264-291 (registration)
    Registers the 'mongo-count-documents' tool on the MCP server with its description, input schema, and handler function.
    server.tool( "mongo-count-documents", "Count documents in a MongoDB collection", { database: z.string().describe("Database name"), collection: z.string().describe("Collection name"), filter: z.record(z.any()).optional().describe("Query filter as JSON object (optional)"), }, async ({ database: dbName, collection: collectionName, filter = {} }) => { try { const db = await ensureConnection(dbName); const collection: Collection = db.collection(collectionName); const count = await collection.countDocuments(filter); return { content: [ { type: "text", text: `Found ${count} document(s) matching the filter`, }, ], }; } catch (error) { throw new Error(`Failed to count documents: ${error instanceof Error ? error.message : 'Unknown error'}`); } } );
  • Helper function to establish MongoDB connection if needed and return the database instance, used by the tool handler.
    async function ensureConnection(dbName: string): Promise<Db> { if (!mongoClient) { const uri = getMongoUri(); mongoClient = new MongoClient(uri); await mongoClient.connect(); } if (!databases.has(dbName)) { databases.set(dbName, mongoClient.db(dbName)); } return databases.get(dbName)!; }

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/ricleedo/mongo-boilerplate-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server