Skip to main content
Glama
embed.test.ts1.45 kB
import { describe, it, expect, beforeEach, vi } from 'vitest'; import { Ollama } from 'ollama'; import { embedWithModel, toolDefinition } from '../../src/tools/embed.js'; import { ResponseFormat } from '../../src/types.js'; describe('embedWithModel', () => { let ollama: Ollama; let mockEmbed: ReturnType<typeof vi.fn>; beforeEach(() => { mockEmbed = vi.fn(); ollama = { embed: mockEmbed, } as any; }); it('should generate embeddings for single input', async () => { mockEmbed.mockResolvedValue({ embeddings: [[0.1, 0.2, 0.3, 0.4, 0.5]], }); const result = await embedWithModel( ollama, 'llama3.2:latest', 'Hello world', ResponseFormat.JSON ); expect(typeof result).toBe('string'); expect(mockEmbed).toHaveBeenCalledTimes(1); expect(mockEmbed).toHaveBeenCalledWith({ model: 'llama3.2:latest', input: 'Hello world', }); const parsed = JSON.parse(result); expect(parsed).toHaveProperty('embeddings'); expect(Array.isArray(parsed.embeddings)).toBe(true); }); it('should work through toolDefinition handler', async () => { mockEmbed.mockResolvedValue({ embeddings: [[0.1, 0.2, 0.3]], }); const result = await toolDefinition.handler( ollama, { model: 'llama3.2:latest', input: 'Test input', format: 'json' }, ResponseFormat.JSON ); expect(typeof result).toBe('string'); }); });

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/rawveg/ollama-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server