We provide all the information about MCP servers via our MCP API.
curl -X GET 'https://glama.ai/api/mcp/v1/servers/ravipesala/spark_mcp_optimizer'
If you have feedback or need assistance with the MCP directory API, please join our Discord server
skew_report.json•2.16 kB
{
"app_id": "application_1768320005356_0008",
"skew_analysis": [
{
"is_skewed": true,
"skew_ratio": 0.0,
"max_duration": 0.0,
"median_duration": 0.0,
"stage_id": 0
},
{
"is_skewed": true,
"skew_ratio": 0.0,
"max_duration": 0.0,
"median_duration": 0.0,
"stage_id": 2
}
],
"spill_analysis": [
{
"has_spill": true,
"total_disk_spill": 0,
"total_memory_spill": 0,
"stage_id": 0
},
{
"has_spill": true,
"total_disk_spill": 0,
"total_memory_spill": 0,
"stage_id": 2
},
{
"has_spill": true,
"total_disk_spill": 0,
"total_memory_spill": 0,
"stage_id": 5
}
],
"resource_analysis": [],
"partitioning_analysis": [],
"join_analysis": [],
"recommendations": [
{
"category": "Code",
"issue": "Hardcoded number of partitions.",
"suggestion": "Replace `repartition(10)` with a dynamic approach based on the input data size or cluster configuration. Consider using `repartition(numPartitions=spark.sparkContext.defaultParallelism)` or calculate the number of partitions based on data size (e.g., 1 partition per 128MB of uncompressed data). This can be determined from the `spark.read.load().inputFiles()` if source is accessible.",
"evidence": "Line: df = spark.createDataFrame(...).repartition(10)",
"impact_level": "Medium"
},
{
"category": "Code",
"issue": "Use of `collect()` on a grouped DataFrame.",
"suggestion": "`collect()` brings the entire result set to the driver, which can lead to OutOfMemoryErrors, especially with skewed data. If you only need a sample of the results or aggregations use `take()` or aggregate the counts. If you need all results and memory isn't an issue, then this might be acceptable, but consider the size of the results from the `groupBy` operation before using `collect()`. Consider debugging with a `limit()` or `show()` before applying `collect()` to confirm memory usage, and the skew impacts.",
"evidence": "Line: grouped.collect()",
"impact_level": "Medium"
}
]
}