Skip to main content
Glama

Petstore MCP Server

README.md11.7 kB
# Petstore MCP Server & Client A comprehensive Model Context Protocol (MCP) implementation for the Swagger Petstore API. This project includes both a complete MCP server and a sophisticated client system for seamless agent integration. ## Overview This project provides: - **MCP Server**: Complete implementation of all Petstore API endpoints - **MCP Client**: High-level client with agent-friendly interfaces - **Agent Integration**: Ready-to-use components for AI agents - **Configuration Management**: Flexible configuration system - **Prompt Templates**: Pre-built prompts for different scenarios ## Project Structure ``` petstore/ ├── openapi.yaml # OpenAPI 3.0 specification ├── petstore-mcp-server.py # MCP server implementation ├── petstore_mcp_client.py # Comprehensive MCP client ├── agent_interface.py # High-level agent interface ├── transport.py # MCP transport layer ├── prompt_manager.py # Prompt template management ├── sampling.py # AI model sampling configurations ├── client_config.py # Configuration management ├── requirements.txt # Server dependencies ├── client_requirements.txt # Client dependencies ├── mcp-server-config.json # MCP server configuration ├── example_usage.py # Usage examples ├── test_server.py # Server testing script ├── setup.sh # Setup script └── README.md # This documentation ``` --- # MCP Server ## Features The MCP server provides comprehensive access to the Petstore API with 19 tools across three categories: ### Pet Management (8 tools) - **add_pet**: Add a new pet to the store - **update_pet**: Update an existing pet - **get_pet_by_id**: Find pet by ID - **find_pets_by_status**: Find pets by status (available, pending, sold) - **find_pets_by_tags**: Find pets by tags - **update_pet_with_form**: Update a pet using form data - **delete_pet**: Delete a pet - **upload_pet_image**: Upload an image for a pet ### Store Operations (4 tools) - **get_inventory**: Get pet inventories by status - **place_order**: Place an order for a pet - **get_order_by_id**: Find purchase order by ID - **delete_order**: Delete purchase order by ID ### User Management (7 tools) - **create_user**: Create a new user - **create_users_with_list**: Create multiple users from a list - **login_user**: Log user into the system - **logout_user**: Log out current user session - **get_user_by_name**: Get user by username - **update_user**: Update user information - **delete_user**: Delete a user ## Server Installation 1. **Install server dependencies**: ```bash pip3 install -r requirements.txt ``` 2. **Make the server executable**: ```bash chmod +x petstore-mcp-server.py ``` 3. **Or run the setup script**: ```bash bash setup.sh ``` ## Server Configuration ### For Amazon Q CLI Add the server to your MCP configuration: ```json { "mcpServers": { "petstore": { "command": "python3", "args": ["petstore-mcp-server.py"], "cwd": "/path/to/petstore", "env": {} } } } ``` ### Running the Server ```bash # Direct execution python3 petstore-mcp-server.py # With Amazon Q CLI q chat --mcp-server petstore ``` ## Server API Examples ### Pet Management **Add a new pet**: ```json { "pet": { "name": "Buddy", "photoUrls": ["https://example.com/buddy.jpg"], "category": { "id": 1, "name": "Dogs" }, "tags": [ { "id": 1, "name": "friendly" } ], "status": "available" } } ``` **Find pets by status**: ```json { "status": "available" } ``` ### Store Operations **Place an order**: ```json { "order": { "petId": 123, "quantity": 1, "shipDate": "2024-12-01T10:00:00Z", "status": "placed", "complete": false } } ``` ### User Management **Create a user**: ```json { "user": { "username": "johndoe", "firstName": "John", "lastName": "Doe", "email": "john@example.com", "password": "password123", "phone": "555-1234", "userStatus": 1 } } ``` --- # MCP Client ## Client Architecture The MCP client system consists of multiple layers for maximum flexibility and ease of use: ### Core Components 1. **Transport Layer** (`transport.py`) - Handles MCP server communication - Connection management with async context managers - Error handling and logging 2. **Configuration Management** (`client_config.py`) - Centralized configuration system - Server connection settings - Retry policies and caching options 3. **Prompt Management** (`prompt_manager.py`) - Template-based prompt generation - Different templates for various operations - Extensible prompt system 4. **Sampling Configuration** (`sampling.py`) - Multiple AI model sampling presets - Configurable parameters for different use cases - Easy configuration management 5. **Agent Interface** (`agent_interface.py`) - High-level task execution - Seamless integration of all components - Agent-friendly API ## Client Installation 1. **Install client dependencies**: ```bash pip3 install -r client_requirements.txt ``` 2. **Ensure server is available**: ```bash # Make sure the MCP server is in the same directory ls petstore-mcp-server.py ``` ## Client Usage ### Basic Client Usage ```python from petstore_mcp_client import PetstoreClient async def main(): client = PetstoreClient() async with client.connect(): # Find available pets pets = await client.find_pets_by_status("available") # Add a new pet new_pet = await client.add_pet( name="Buddy", photo_urls=["https://example.com/buddy.jpg"], status="available" ) # Get inventory inventory = await client.get_inventory() ``` ### Agent Interface Usage ```python from agent_interface import PetstoreAgent from client_config import ClientConfig async def main(): # Initialize agent with configuration config = ClientConfig.default() agent = PetstoreAgent(config) # Execute high-level tasks result = await agent.execute_task("find_pets", status="available") # Get prompts for AI models prompt = agent.get_prompt("pet_search", status="available", tags=["friendly"]) # Get sampling configuration sampling_config = agent.get_sampling_config("balanced") ``` ### Advanced Client Features ```python from petstore_mcp_client import PetstoreAgent async def main(): agent = PetstoreAgent() # Execute complex workflows workflow_result = await agent.execute_pet_workflow( "create_pet", name="Max", category="Dogs", tags=["friendly", "large"] ) # Get store summary summary = await agent.client.get_store_summary() ``` ## Configuration Options ### Client Configuration ```python from client_config import ClientConfig, ServerConfig # Custom configuration config = ClientConfig( server=ServerConfig( command="python3", args=["./petstore-mcp-server.py"], timeout=30 ), retry_attempts=3, retry_delay=1.0, log_level="INFO", enable_caching=True, cache_ttl=300 ) ``` ### Sampling Configurations Available sampling presets: - **conservative**: Low temperature, focused responses - **balanced**: Moderate creativity and focus (default) - **creative**: Higher temperature, more creative responses - **precise**: Zero temperature, deterministic responses ```python from sampling import SamplingManager sampling = SamplingManager() # Get different configurations conservative = sampling.get_config_dict("conservative") creative = sampling.get_config_dict("creative") ``` ### Prompt Templates Available prompt templates: - **pet_search**: For finding and filtering pets - **pet_management**: For pet inventory operations - **order_processing**: For handling customer orders - **user_management**: For user account operations ```python from prompt_manager import PromptManager prompts = PromptManager() # Get prompt for pet search prompt = prompts.get_prompt( "pet_search", status="available", tags=["friendly", "small"] ) ``` ## Agent Integration ### Task-Based Operations The agent interface provides high-level tasks that AI agents can easily use: ```python # Find pets await agent.execute_task("find_pets", status="available", tags=["friendly"]) # Manage pets await agent.execute_task("manage_pet", action="add", name="Buddy", photoUrls=["url"]) # Process orders await agent.execute_task("process_order", action="place", petId=123, quantity=1) # Manage users await agent.execute_task("manage_user", action="create", username="john", email="john@example.com") ``` ### Workflow Execution ```python # Pet management workflow result = await agent.execute_pet_workflow( "create_pet", name="Luna", category="Cats", tags=["indoor", "quiet"], photo_urls=["https://example.com/luna.jpg"] ) # Inventory management workflow inventory = await agent.execute_pet_workflow("manage_inventory") ``` ## Error Handling The client system includes comprehensive error handling: - **Network Errors**: Automatic retry with exponential backoff - **API Errors**: Meaningful error messages and suggestions - **Validation Errors**: Input validation with helpful feedback - **Connection Errors**: Graceful degradation and recovery ## Testing ### Server Testing ```bash # Test server functionality python3 test_server.py ``` ### Client Testing ```bash # Test client functionality python3 example_usage.py ``` ## API Reference ### Base URL - Production: `https://petstore3.swagger.io/api/v3` ### Authentication - API Key authentication for certain endpoints - OAuth2 support for pet operations ### Rate Limiting - Configurable retry policies - Exponential backoff for failed requests ## Development ### Extending the Server 1. Add new tool functions using `@server.call_tool()` decorator 2. Update tool definitions in `handle_list_tools()` 3. Add appropriate error handling and validation 4. Update documentation ### Extending the Client 1. Add new methods to `PetstoreClient` class 2. Create corresponding agent workflows 3. Add prompt templates for new operations 4. Update configuration options ### Adding New Prompts ```python from prompt_manager import PromptTemplate # Create new template template = PromptTemplate( system="You are a pet care specialist.", user_template="Provide care advice for {pet_type} with {condition}", examples={"basic": "Care for a sick dog"} ) # Add to manager prompt_manager.add_template("pet_care", template) ``` ## Security Considerations - API keys are handled securely - Passwords are not logged or cached - HTTPS connections for all API calls - Input validation and sanitization - Error messages don't expose sensitive information ## Performance - Async/await throughout for non-blocking operations - Connection pooling for HTTP requests - Configurable caching with TTL - Efficient JSON parsing and serialization ## Contributing 1. Fork the repository 2. Create a feature branch 3. Add tests for new functionality 4. Update documentation 5. Submit a pull request ## License This project follows the same license as the Swagger Petstore API (Apache 2.0). ## Support For issues and questions: 1. Check the example usage scripts 2. Review the test files 3. Examine the configuration options 4. Create an issue with detailed information

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/raghavendraprakash/mcpforrestapis'

If you have feedback or need assistance with the MCP directory API, please join our Discord server