Skip to main content
Glama

Petstore MCP Server

sampling.py2.4 kB
#!/usr/bin/env python3 """ Sampling configurations for different AI model interactions """ from dataclasses import dataclass from typing import Dict, Any, Optional @dataclass class SamplingConfig: """Configuration for AI model sampling parameters""" temperature: float = 0.3 top_p: float = 0.9 max_tokens: int = 1500 frequency_penalty: float = 0.1 presence_penalty: float = 0.1 stop_sequences: Optional[list] = None class SamplingManager: """Manages different sampling configurations""" def __init__(self): self.configs = { "conservative": SamplingConfig( temperature=0.1, top_p=0.9, max_tokens=1000, frequency_penalty=0.0, presence_penalty=0.0 ), "balanced": SamplingConfig( temperature=0.3, top_p=0.9, max_tokens=1500, frequency_penalty=0.1, presence_penalty=0.1 ), "creative": SamplingConfig( temperature=0.7, top_p=0.95, max_tokens=2000, frequency_penalty=0.2, presence_penalty=0.2 ), "precise": SamplingConfig( temperature=0.0, top_p=1.0, max_tokens=800, frequency_penalty=0.0, presence_penalty=0.0 ) } def get_config(self, config_name: str) -> SamplingConfig: """Get sampling configuration by name""" if config_name not in self.configs: return self.configs["balanced"] # Default return self.configs[config_name] def get_config_dict(self, config_name: str) -> Dict[str, Any]: """Get configuration as dictionary""" config = self.get_config(config_name) return { "temperature": config.temperature, "top_p": config.top_p, "max_tokens": config.max_tokens, "frequency_penalty": config.frequency_penalty, "presence_penalty": config.presence_penalty, "stop": config.stop_sequences } def add_config(self, name: str, config: SamplingConfig): """Add new sampling configuration""" self.configs[name] = config

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/raghavendraprakash/mcpforrestapis'

If you have feedback or need assistance with the MCP directory API, please join our Discord server