Skip to main content
Glama
NEXT_STEPS.md18 kB
# Next Steps - Immediate Actions This document outlines the immediate next steps for implementing the roadmap priorities. ## ⚠️ IMPORTANT LEGAL DISCLAIMER **MCP Sigmund is an educational learning resource and data analysis tool, NOT a financial advisor or advisory service.** ### 🚫 **NOT FINANCIAL ADVICE** - This system does **NOT** provide financial advice, recommendations, or guidance - All insights, analysis, and suggestions are for **educational purposes only** - Users must make their own financial decisions based on their own research and judgment - No information from this system should be considered as investment, tax, or financial advice ### 📚 **Educational Purpose Only** - MCP Sigmund is designed as a **learning resource** for understanding personal financial data - The system helps users analyze and understand their financial patterns and trends - All outputs are intended for **educational and informational purposes** - Users should consult qualified financial professionals for actual financial advice **By using MCP Sigmund, you acknowledge this is an educational tool, not a financial advisory service.** ## 🎯 Priority 1: End-to-End Encryption for PII Data ### Research Phase - [ ] **Evaluate Encryption Libraries** - Research Node.js crypto libraries (crypto-js, node-forge, libsodium) - Compare performance and security features - Test encryption/decryption performance with sample data - [ ] **Data Classification Analysis** - Audit current database schema for PII fields - Create classification matrix (public, internal, confidential, restricted) - Identify fields that need encryption vs. anonymization - [ ] **Design Encryption Architecture** - Choose encryption algorithm (AES-256-GCM recommended) - Design key management strategy (local key storage) - Plan database schema changes for encrypted fields ### Prototype Phase - [ ] **Build Encryption Utilities** - Create encryption/decryption functions - Implement key generation and management - Build field-level encryption wrapper - [ ] **Anonymization Engine** - Develop pseudonymization algorithms - Create data masking utilities - Implement searchable encryption for queries - [ ] **Database Integration** - Design encrypted field schema - Create migration scripts - Test performance impact ## 🎯 Priority 2: Financial Analysis Tools Research ### Research Phase - [ ] **Financial Analysis Libraries** - Research time series analysis libraries (pandas, numpy, scipy) - Evaluate forecasting libraries (prophet, ARIMA, LSTM) - Study optimization libraries (scipy.optimize, cvxpy) - Test Monte Carlo simulation libraries - [ ] **Vertical-Specific Research** - Survey freelancer financial pain points - Research contractor tax optimization strategies - Study small business cash flow management - Analyze real estate investment metrics - Research healthcare professional financial needs ### Prototype Phase - [ ] **Basic Forecasting Engine** - Implement simple cash flow forecasting - Create seasonal trend analysis - Build scenario modeling framework - Test with sample financial data - [ ] **Vertical Tool Prototypes** - Freelancer income smoothing algorithms - Contractor tax estimation tools - Small business cash flow optimization - Basic investment analysis tools ## 🎯 Priority 3: Unified Data Format with Provider Extensions ### Research Phase - [ ] **Data Schema Analysis** - Analyze current database schema for extensibility - Research JSON schema standards and validation - Study provider API data formats and capabilities - Design extension field architecture - [ ] **Provider Research** - Map banking provider data capabilities - Research investment platform data structures - Study cryptocurrency exchange data formats - Analyze payment processor data schemas ### Prototype Phase - [ ] **Unified Schema Design** - Create core transaction schema - Design provider extension framework - Build data validation system - Test with sample provider data - [ ] **Provider Adapter Framework** - Build standardized provider adapter interface - Create sample adapters for major providers - Implement data transformation pipeline - Test data enrichment capabilities ## 🎯 Priority 4: Explainable AI (XAI) Framework ### Research Phase - [ ] **XAI Framework Research** - Study financial AI explainability requirements (GDPR Article 22, financial regulations) - Research explanation techniques (LIME, SHAP, decision trees, attention mechanisms) - Evaluate XAI libraries and frameworks for Node.js/TypeScript - Study audit trail and compliance requirements for financial AI - [ ] **Financial AI Compliance Research** - Research GDPR Article 22 (automated decision-making) requirements - Study financial services AI regulations (EU AI Act, US financial regulations) - Analyze bias detection and fairness requirements - Research explanation export formats for regulatory submissions ### Prototype Phase - [ ] **XAI Explanation Engine** - Build decision tree explanation generator - Implement feature importance scoring - Create confidence interval calculations - Build step-by-step reasoning engine - Implement alternative scenario explanations - [ ] **Audit Trail System** - Design comprehensive logging schema - Implement data lineage tracking - Build model versioning system - Create regulatory compliance reporting - Implement user interaction history tracking ## 🎯 Priority 5: Local LLM Integration via Ollama ### Research Phase - [ ] **Ollama Integration Research** - Study Ollama API and client libraries - Test model performance and capabilities - Evaluate resource requirements - [ ] **Model Selection** - Test different models for financial data analysis - Compare performance vs. accuracy trade-offs - Select optimal models for different use cases ### Prototype Phase - [ ] **Ollama Client Implementation** - Build Ollama client wrapper - Implement model management - Create health monitoring - [ ] **Local Processing Pipeline** - Design anonymized data preparation - Create context-aware prompts - Implement response processing ## 🛠️ Technical Implementation Details ### Encryption Implementation ```typescript // Example structure for encrypted fields interface EncryptedField { encrypted: string; iv: string; tag: string; } // Encryption utilities class DataEncryption { encrypt(data: string, key: Buffer): EncryptedField; decrypt(encrypted: EncryptedField, key: Buffer): string; generateKey(): Buffer; } ``` ### Unified Data Format ```typescript // Core transaction schema interface CoreTransaction { id: string; date: Date; amount: number; currency: string; description: string; category: string; account_id: string; provider_id: string; type: 'debit' | 'credit' | 'transfer'; status: 'completed' | 'pending' | 'failed'; metadata: Record<string, any>; provider_extensions: ProviderExtensions; } // Provider-specific extensions interface ProviderExtensions { banking?: BankingExtensions; investment?: InvestmentExtensions; crypto?: CryptoExtensions; payment?: PaymentExtensions; credit_card?: CreditCardExtensions; } interface BankingExtensions { routing_number?: string; branch_code?: string; transaction_code?: string; check_number?: string; atm_location?: string; merchant_category_code?: string; } interface InvestmentExtensions { security_symbol?: string; security_name?: string; shares?: number; price_per_share?: number; market_value?: number; portfolio_allocation?: number; dividend_amount?: number; capital_gains?: number; } interface CryptoExtensions { blockchain_address?: string; transaction_hash?: string; gas_fee?: number; network?: string; token_symbol?: string; token_amount?: number; exchange_rate?: number; } // Provider adapter interface interface ProviderAdapter { normalizeTransaction(rawData: any): CoreTransaction; enrichTransaction(transaction: CoreTransaction): CoreTransaction; validateData(data: any): boolean; getProviderCapabilities(): ProviderCapabilities; } ``` ### Financial Analysis Tools ```typescript // Financial forecasting engine class FinancialForecaster { forecastCashFlow(data: Transaction[], periods: number): ForecastResult; analyzeSeasonality(data: Transaction[]): SeasonalPattern; runMonteCarloSimulation(scenarios: Scenario[]): SimulationResult; optimizeBudget(income: number, goals: FinancialGoal[]): BudgetPlan; } // Vertical-specific tools class FreelancerTools { estimateQuarterlyTaxes(income: number, expenses: number): TaxEstimate; optimizeIncomeSmoothing(transactions: Transaction[]): SmoothingPlan; calculateEmergencyFund(monthlyExpenses: number): EmergencyFundTarget; } class ContractorTools { analyzeClientPaymentPatterns(transactions: Transaction[]): PaymentAnalysis; optimizeBusinessExpenses(expenses: Transaction[]): ExpenseOptimization; forecastProjectProfitability(projects: Project[]): ProfitabilityForecast; } ``` ### XAI Framework ```typescript // XAI Explanation Engine interface XAIExplanation { decision_id: string; timestamp: Date; model_version: string; input_data_hash: string; explanation_type: 'decision_tree' | 'feature_importance' | 'confidence_interval' | 'step_by_step'; explanation_content: ExplanationContent; confidence_score: number; alternative_scenarios?: AlternativeScenario[]; audit_trail: AuditEntry[]; } interface ExplanationContent { natural_language: string; technical_details: TechnicalExplanation; visual_elements?: VisualExplanation[]; structured_data: StructuredExplanation; } interface TechnicalExplanation { algorithm_used: string; feature_weights: Record<string, number>; decision_path: DecisionNode[]; statistical_significance: number; uncertainty_quantification: UncertaintyMetrics; } interface AuditEntry { timestamp: Date; action: string; data_accessed: string[]; model_version: string; user_id?: string; compliance_flags: ComplianceFlag[]; } // XAI Compliance Framework interface ComplianceFramework { gdpr_article_22_compliance: boolean; financial_ai_regulations: FinancialRegulation[]; bias_detection_results: BiasAnalysis; fairness_metrics: FairnessMetrics; explanation_export_formats: ExportFormat[]; } // XAI Explanation Generator class XAIExplanationEngine { generateExplanation(decision: AIDecision, context: FinancialContext): XAIExplanation; generateAuditTrail(decision: AIDecision): AuditEntry[]; exportForCompliance(explanation: XAIExplanation, format: ExportFormat): ComplianceReport; detectBias(decision: AIDecision, historicalData: Transaction[]): BiasAnalysis; calculateFairnessMetrics(decisions: AIDecision[]): FairnessMetrics; } ``` ### Ollama Integration ```typescript // Ollama client wrapper class OllamaClient { async generate(prompt: string, model: string): Promise<string>; async listModels(): Promise<string[]>; async healthCheck(): Promise<boolean>; } ``` ### Database Schema Changes ```sql -- Example encrypted field structure ALTER TABLE transactions ADD COLUMN description_encrypted BYTEA, ADD COLUMN description_iv BYTEA, ADD COLUMN description_tag BYTEA; -- Anonymized fields for AI processing ALTER TABLE transactions ADD COLUMN description_anonymized TEXT, ADD COLUMN merchant_anonymized TEXT; -- Unified data format with provider extensions ALTER TABLE transactions ADD COLUMN provider_extensions JSONB, ADD COLUMN metadata JSONB, ADD COLUMN enrichment_data JSONB; -- Create indexes for provider extensions CREATE INDEX idx_transactions_provider_extensions ON transactions USING GIN (provider_extensions); CREATE INDEX idx_transactions_metadata ON transactions USING GIN (metadata); -- Provider capabilities table CREATE TABLE provider_capabilities ( id SERIAL PRIMARY KEY, provider_id VARCHAR(50) NOT NULL, capability_type VARCHAR(50) NOT NULL, capability_data JSONB, created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP, updated_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP ); -- Data enrichment rules table CREATE TABLE enrichment_rules ( id SERIAL PRIMARY KEY, rule_name VARCHAR(100) NOT NULL, rule_type VARCHAR(50) NOT NULL, rule_config JSONB, is_active BOOLEAN DEFAULT true, created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP ); -- XAI Explanation Storage CREATE TABLE xai_explanations ( id SERIAL PRIMARY KEY, decision_id VARCHAR(100) UNIQUE NOT NULL, model_version VARCHAR(50) NOT NULL, explanation_type VARCHAR(50) NOT NULL, explanation_content JSONB NOT NULL, confidence_score DECIMAL(3,2) NOT NULL, input_data_hash VARCHAR(64) NOT NULL, created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP, expires_at TIMESTAMP ); -- XAI Audit Trail CREATE TABLE xai_audit_trail ( id SERIAL PRIMARY KEY, decision_id VARCHAR(100) NOT NULL, action_type VARCHAR(50) NOT NULL, data_accessed JSONB, model_version VARCHAR(50) NOT NULL, user_id VARCHAR(100), compliance_flags JSONB, timestamp TIMESTAMP DEFAULT CURRENT_TIMESTAMP, FOREIGN KEY (decision_id) REFERENCES xai_explanations(decision_id) ); -- XAI Compliance Reports CREATE TABLE xai_compliance_reports ( id SERIAL PRIMARY KEY, report_type VARCHAR(50) NOT NULL, report_period_start DATE NOT NULL, report_period_end DATE NOT NULL, compliance_status JSONB NOT NULL, bias_analysis JSONB, fairness_metrics JSONB, generated_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP, exported_at TIMESTAMP ); -- XAI Model Versions CREATE TABLE xai_model_versions ( id SERIAL PRIMARY KEY, model_name VARCHAR(100) NOT NULL, version VARCHAR(50) NOT NULL, deployment_date TIMESTAMP NOT NULL, performance_metrics JSONB, explanation_capabilities JSONB, compliance_status JSONB, is_active BOOLEAN DEFAULT true ); -- Create indexes for XAI tables CREATE INDEX idx_xai_explanations_decision_id ON xai_explanations(decision_id); CREATE INDEX idx_xai_explanations_created_at ON xai_explanations(created_at); CREATE INDEX idx_xai_audit_trail_decision_id ON xai_audit_trail(decision_id); CREATE INDEX idx_xai_audit_trail_timestamp ON xai_audit_trail(timestamp); CREATE INDEX idx_xai_compliance_reports_period ON xai_compliance_reports(report_period_start, report_period_end); CREATE INDEX idx_xai_model_versions_active ON xai_model_versions(is_active); ``` ## 📋 Immediate Action Items ### Immediate Actions 1. **Set up development environment for encryption testing** 2. **Research and evaluate encryption libraries** 3. **Audit current database for PII classification** 4. **Research XAI frameworks and explanation techniques** 5. **Study financial AI compliance requirements (GDPR Article 22, EU AI Act)** 6. **Install and test Ollama locally** 7. **Research financial analysis libraries and algorithms** 8. **Survey target user segments for vertical-specific needs** 9. **Analyze current database schema for extensibility** 10. **Research provider API data formats and capabilities** ### Short-term Actions 1. **Build encryption proof of concept** 2. **Design XAI explanation engine architecture** 3. **Create XAI audit trail system prototype** 4. **Test Ollama integration with sample data** 5. **Design database schema changes (including XAI tables)** 6. **Create anonymization algorithm prototypes** 7. **Prototype basic financial forecasting algorithms with explanations** 8. **Design vertical-specific tool architecture with XAI integration** 9. **Create unified data schema prototype** 10. **Build provider adapter framework** ### Medium-term Actions 1. **Implement encryption layer** 2. **Build Ollama client wrapper** 3. **Create migration scripts** 4. **Performance testing and optimization** ## 🔍 Success Criteria ### Encryption Implementation - [ ] All PII fields encrypted at rest - [ ] <10% performance impact on queries - [ ] Zero data exposure in logs - [ ] Successful anonymization for AI processing ### XAI Framework - [ ] 100% of AI decisions include explanations - [ ] Complete audit trail for all AI-generated insights - [ ] GDPR Article 22 compliance for automated decisions - [ ] Bias detection and fairness reporting - [ ] Regulatory compliance export capabilities - [ ] User-friendly explanations for 95% of queries - [ ] Technical explanations available for auditors - [ ] Confidence scores for all recommendations ### Ollama Integration - [ ] Local model responses in <5 seconds - [ ] 95% accuracy on financial queries - [ ] Graceful fallback for model failures - [ ] Resource usage monitoring ## 📚 Resources ### Encryption - [Node.js Crypto Documentation](https://nodejs.org/api/crypto.html) - [AES-256-GCM Best Practices](https://cryptopals.com/) - [OWASP Cryptographic Storage Cheat Sheet](https://cheatsheetseries.owasp.org/cheatsheets/Cryptographic_Storage_Cheat_Sheet.html) ### Ollama - [Ollama Documentation](https://ollama.ai/docs) - [Ollama API Reference](https://github.com/ollama/ollama/blob/main/docs/api.md) - [Model Performance Benchmarks](https://ollama.ai/library) ### XAI & Explainability - [GDPR Article 22 - Automated Decision Making](https://gdpr.eu/article-22-automated-decision-making/) - [EU AI Act - Explainability Requirements](https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52021PC0206) - [LIME - Local Interpretable Model-agnostic Explanations](https://github.com/marcotcr/lime) - [SHAP - SHapley Additive exPlanations](https://github.com/slundberg/shap) - [Financial AI Explainability Best Practices](https://www.fca.org.uk/publication/discussion/dp20-1.pdf) - [XAI for Financial Services - Research Papers](https://arxiv.org/search/?query=explainable+AI+financial+services) ### Privacy & Security - [GDPR Compliance Guidelines](https://gdpr.eu/) - [Financial Data Privacy Best Practices](https://www.ffiec.gov/) - [Data Anonymization Techniques](https://www.nist.gov/publications) --- *This document will be updated as we progress through the implementation phases.*

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/radup/mcp-sigmund'

If you have feedback or need assistance with the MCP directory API, please join our Discord server