Skip to main content
Glama

Analytical MCP Server

sales_performance_analysis.js2.31 kB
// Sales Performance Analysis Example import { analyzeDataset } from '../build/tools/analyze_dataset.js'; import { hypothesisTesting } from '../build/tools/hypothesis_testing.js'; import { dataVisualizationGenerator } from '../build/tools/data_visualization_generator.js'; // Sample sales data for two different quarters const salesData2023Q3 = [ { quarter: 'Q3 2023', revenue: 100000, marketing_spend: 15000, customer_acquisition: 500 }, { quarter: 'Q3 2023', revenue: 105000, marketing_spend: 16000, customer_acquisition: 520 }, { quarter: 'Q3 2023', revenue: 98000, marketing_spend: 14500, customer_acquisition: 490 } ]; const salesData2023Q4 = [ { quarter: 'Q4 2023', revenue: 120000, marketing_spend: 18000, customer_acquisition: 600 }, { quarter: 'Q4 2023', revenue: 125000, marketing_spend: 19000, customer_acquisition: 620 }, { quarter: 'Q4 2023', revenue: 115000, marketing_spend: 17500, customer_acquisition: 580 } ]; async function performSalesAnalysis() { try { // Descriptive Analysis for Q3 const q3Analysis = await analyzeDataset({ data: salesData2023Q3, analysisType: 'stats' }); console.log("Q3 Sales Analysis:", q3Analysis); // Descriptive Analysis for Q4 const q4Analysis = await analyzeDataset({ data: salesData2023Q4, analysisType: 'stats' }); console.log("Q4 Sales Analysis:", q4Analysis); // Hypothesis Testing: Compare Revenue between Q3 and Q4 const revenueTest = await hypothesisTesting({ testType: 't_test_independent', data: [ salesData2023Q3.map(item => item.revenue), salesData2023Q4.map(item => item.revenue) ], variables: ['Q3 Revenue', 'Q4 Revenue'], alpha: 0.05, alternativeHypothesis: 'two_sided' }); console.log("Revenue Comparison Test:", revenueTest); // Visualization of Sales Data const salesVisualization = await dataVisualizationGenerator({ data: [...salesData2023Q3, ...salesData2023Q4], visualizationType: 'bar', variables: ['quarter', 'revenue'], title: 'Quarterly Sales Performance', includeTrendline: true }); console.log("Sales Visualization Spec:", salesVisualization); } catch (error) { console.error("Analysis Error:", error); } } performSalesAnalysis();

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/quanticsoul4772/analytical-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server