Skip to main content
Glama

MemOS-MCP

by qinshu1109
mem_os.py2.48 kB
import uuid from typing import Any from pydantic import Field, model_validator from memos.configs.base import BaseConfig from memos.configs.llm import LLMConfigFactory from memos.configs.mem_reader import MemReaderConfigFactory from memos.configs.mem_scheduler import SchedulerConfigFactory class MOSConfig(BaseConfig): user_id: str = Field( default="root", description="User ID for the MOS. This is used to distinguish between different users' memories.", ) session_id: str = Field( default=str(uuid.uuid4()), description="Session ID for the MOS. This is used to distinguish between different dialogue", ) chat_model: LLMConfigFactory = Field( ..., default_factory=LLMConfigFactory, description="LLM configuration for the chat model in the MOS", ) mem_reader: MemReaderConfigFactory = Field( ..., default_factory=MemReaderConfigFactory, description="MemReader configuration for the MOS", ) mem_scheduler: SchedulerConfigFactory | None = Field( default=None, description="Memory scheduler configuration for managing memory operations", ) max_turns_window: int = Field( default=15, description="Maximum number of turns to keep in the conversation history", ) top_k: int = Field( default=5, description="Maximum number of memories to retrieve for each query", ) enable_textual_memory: bool = Field( default=True, description="Enable textual memory for the MemChat", ) enable_activation_memory: bool = Field( default=False, description="Enable activation memory for the MemChat", ) enable_parametric_memory: bool = Field( default=False, description="Enable parametric memory for the MemChat", ) enable_mem_scheduler: bool = Field( default=False, description="Enable memory scheduler for automated memory management", ) PRO_MODE: bool = Field( default=False, description="Enable PRO mode for complex query decomposition", ) class MemOSConfigFactory(BaseConfig): """Factory class for creating Memos configurations.""" config: dict[str, Any] = Field(..., description="Configuration for the MemOS backend") @model_validator(mode="after") def create_config(self) -> "MemOSConfigFactory": self.config = MOSConfig(**self.config) return self

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/qinshu1109/memos-MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server