Skip to main content
Glama

MemOS-MCP

by qinshu1109
graph_db.py1.43 kB
from typing import Any, ClassVar from pydantic import BaseModel, Field, field_validator, model_validator from memos.configs.base import BaseConfig class BaseGraphDBConfig(BaseConfig): """Base class for all graph database configurations.""" uri: str user: str password: str class Neo4jGraphDBConfig(BaseGraphDBConfig): """Neo4j-specific configuration.""" db_name: str = Field(..., description="The name of the target Neo4j database") auto_create: bool = Field( default=False, description="Whether to create the DB if it doesn't exist" ) embedding_dimension: int = Field(default=768, description="Dimension of vector embedding") class GraphDBConfigFactory(BaseModel): backend: str = Field(..., description="Backend for graph database") config: dict[str, Any] = Field(..., description="Configuration for the graph database backend") backend_to_class: ClassVar[dict[str, Any]] = { "neo4j": Neo4jGraphDBConfig, } @field_validator("backend") @classmethod def validate_backend(cls, backend: str) -> str: if backend not in cls.backend_to_class: raise ValueError(f"Unsupported graph db backend: {backend}") return backend @model_validator(mode="after") def instantiate_config(self): config_class = self.backend_to_class[self.backend] self.config = config_class(**self.config) return self

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/qinshu1109/memos-MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server