Skip to main content
Glama
pydantic

mcp-run-python

Official
by pydantic
test_cerebras.py5.42 kB
from __future__ import annotations as _annotations import re import httpx import pytest from pytest_mock import MockerFixture from pydantic_ai._json_schema import InlineDefsJsonSchemaTransformer from pydantic_ai.exceptions import UserError from pydantic_ai.profiles.harmony import harmony_model_profile from pydantic_ai.profiles.meta import meta_model_profile from pydantic_ai.profiles.openai import OpenAIJsonSchemaTransformer, OpenAIModelProfile from pydantic_ai.profiles.qwen import qwen_model_profile from ..conftest import TestEnv, try_import with try_import() as imports_successful: from openai import AsyncOpenAI from pydantic_ai.models import infer_model from pydantic_ai.models.cerebras import CerebrasModel from pydantic_ai.providers.cerebras import CerebrasProvider, zai_model_profile pytestmark = pytest.mark.skipif(not imports_successful(), reason='openai not installed') def test_cerebras_provider(): provider = CerebrasProvider(api_key='api-key') assert provider.name == 'cerebras' assert provider.base_url == 'https://api.cerebras.ai/v1' assert isinstance(provider.client, AsyncOpenAI) assert provider.client.api_key == 'api-key' def test_cerebras_provider_need_api_key(env: TestEnv) -> None: env.remove('CEREBRAS_API_KEY') with pytest.raises( UserError, match=re.escape( 'Set the `CEREBRAS_API_KEY` environment variable or pass it via `CerebrasProvider(api_key=...)` ' 'to use the Cerebras provider.' ), ): CerebrasProvider() def test_cerebras_provider_pass_http_client() -> None: http_client = httpx.AsyncClient() provider = CerebrasProvider(http_client=http_client, api_key='api-key') assert provider.client._client == http_client # type: ignore[reportPrivateUsage] def test_cerebras_provider_pass_openai_client() -> None: openai_client = AsyncOpenAI(api_key='api-key') provider = CerebrasProvider(openai_client=openai_client) assert provider.client == openai_client def test_cerebras_provider_model_profile(mocker: MockerFixture): openai_client = AsyncOpenAI(api_key='api-key') provider = CerebrasProvider(openai_client=openai_client) ns = 'pydantic_ai.providers.cerebras' meta_model_profile_mock = mocker.patch(f'{ns}.meta_model_profile', wraps=meta_model_profile) qwen_model_profile_mock = mocker.patch(f'{ns}.qwen_model_profile', wraps=qwen_model_profile) harmony_model_profile_mock = mocker.patch(f'{ns}.harmony_model_profile', wraps=harmony_model_profile) zai_model_profile_mock = mocker.patch(f'{ns}.zai_model_profile', wraps=zai_model_profile) # Test llama model - uses meta profile which has InlineDefsJsonSchemaTransformer meta_profile = provider.model_profile('llama-3.3-70b') meta_model_profile_mock.assert_called_with('llama-3.3-70b') assert meta_profile is not None assert isinstance(meta_profile, OpenAIModelProfile) assert meta_profile.json_schema_transformer == InlineDefsJsonSchemaTransformer # Test qwen model - uses qwen profile which has InlineDefsJsonSchemaTransformer qwen_profile = provider.model_profile('qwen-3-32b') qwen_model_profile_mock.assert_called_with('qwen-3-32b') assert qwen_profile is not None assert isinstance(qwen_profile, OpenAIModelProfile) assert qwen_profile.json_schema_transformer == InlineDefsJsonSchemaTransformer # Test gpt-oss model (harmony) - uses OpenAIJsonSchemaTransformer harmony_profile = provider.model_profile('gpt-oss-120b') harmony_model_profile_mock.assert_called_with('gpt-oss-120b') assert harmony_profile is not None assert isinstance(harmony_profile, OpenAIModelProfile) assert harmony_profile.json_schema_transformer == OpenAIJsonSchemaTransformer # Test zai model - uses default OpenAI profile (zai_model_profile returns None) zai_profile = provider.model_profile('zai-glm-4.6') zai_model_profile_mock.assert_called_with('zai-glm-4.6') assert zai_profile is not None assert isinstance(zai_profile, OpenAIModelProfile) assert zai_profile.json_schema_transformer == OpenAIJsonSchemaTransformer # Test unknown model - should still return a profile with OpenAIJsonSchemaTransformer unknown_profile = provider.model_profile('unknown-model') assert unknown_profile is not None assert isinstance(unknown_profile, OpenAIModelProfile) assert unknown_profile.json_schema_transformer == OpenAIJsonSchemaTransformer # Verify unsupported model settings are set for all profiles for profile in [meta_profile, qwen_profile, harmony_profile, zai_profile, unknown_profile]: assert isinstance(profile, OpenAIModelProfile) assert 'frequency_penalty' in profile.openai_unsupported_model_settings assert 'logit_bias' in profile.openai_unsupported_model_settings assert 'presence_penalty' in profile.openai_unsupported_model_settings assert 'parallel_tool_calls' in profile.openai_unsupported_model_settings assert 'service_tier' in profile.openai_unsupported_model_settings def test_infer_cerebras_model(env: TestEnv): """Test that infer_model correctly creates a CerebrasModel from a model name string.""" env.set('CEREBRAS_API_KEY', 'test-api-key') model = infer_model('cerebras:llama-3.3-70b') assert isinstance(model, CerebrasModel) assert model.model_name == 'llama-3.3-70b'

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/pydantic/pydantic-ai'

If you have feedback or need assistance with the MCP directory API, please join our Discord server