Skip to main content
Glama

analyze

Analyze Python application profiling data to identify performance bottlenecks, memory leaks, and optimization opportunities using CPU, GPU, and memory metrics.

Instructions

Analyze profiling data with flexible analysis types.

Args: profile_id: Profile ID from profile() metric_type: "all", "cpu", "memory", "gpu", "bottlenecks", "leaks", "file", "functions", "recommendations" top_n: Number of items to return (for rankings) cpu_threshold: Minimum CPU % to flag bottleneck memory_threshold_mb: Minimum MB to flag bottleneck filename: Required if metric_type="file", file to analyze

Returns: {metric_type, data, summary} structure varies by metric_type

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
profile_idYes
metric_typeNoall
top_nNo
cpu_thresholdNo
memory_threshold_mbNo
filenameNo

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/ptmorris05/scalene-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server