Skip to main content
Glama

scan_text_nodes

Extract all text content from a selected Figma design element to analyze or process text data programmatically.

Instructions

Scan all text nodes in the selected Figma node

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
nodeIdYesID of the node to scan

Implementation Reference

  • MCP tool handler for 'scan_text_nodes'. Sends command to Figma plugin to scan text nodes in a given nodeId, supports chunking for large designs, formats and returns the list of text nodes found.
    "scan_text_nodes", "Scan all text nodes in the selected Figma node", { nodeId: z.string().describe("ID of the node to scan"), }, async ({ nodeId }) => { try { // Initial response to indicate we're starting the process const initialStatus = { type: "text" as const, text: "Starting text node scanning. This may take a moment for large designs...", }; // Use the plugin's scan_text_nodes function with chunking flag const result = await sendCommandToFigma("scan_text_nodes", { nodeId, useChunking: true, // Enable chunking on the plugin side chunkSize: 10 // Process 10 nodes at a time }); // If the result indicates chunking was used, format the response accordingly if (result && typeof result === 'object' && 'chunks' in result) { const typedResult = result as { success: boolean, totalNodes: number, processedNodes: number, chunks: number, textNodes: Array<any> }; const summaryText = ` Scan completed: - Found ${typedResult.totalNodes} text nodes - Processed in ${typedResult.chunks} chunks `; return { content: [ initialStatus, { type: "text" as const, text: summaryText }, { type: "text" as const, text: JSON.stringify(typedResult.textNodes, null, 2) } ], }; } // If chunking wasn't used or wasn't reported in the result format, return the result as is return { content: [ initialStatus, { type: "text", text: JSON.stringify(result, null, 2), }, ], }; } catch (error) { return { content: [ { type: "text", text: `Error scanning text nodes: ${error instanceof Error ? error.message : String(error) }`, }, ], }; } } );
  • Input schema for the 'scan_text_nodes' tool using Zod validation: requires nodeId string.
    { nodeId: z.string().describe("ID of the node to scan"), },
  • Registration of the 'scan_text_nodes' tool in the MCP server using server.tool() with name, description, input schema, and handler function.
    server.tool( "scan_text_nodes", "Scan all text nodes in the selected Figma node", { nodeId: z.string().describe("ID of the node to scan"), }, async ({ nodeId }) => { try { // Initial response to indicate we're starting the process const initialStatus = { type: "text" as const, text: "Starting text node scanning. This may take a moment for large designs...", }; // Use the plugin's scan_text_nodes function with chunking flag const result = await sendCommandToFigma("scan_text_nodes", { nodeId, useChunking: true, // Enable chunking on the plugin side chunkSize: 10 // Process 10 nodes at a time }); // If the result indicates chunking was used, format the response accordingly if (result && typeof result === 'object' && 'chunks' in result) { const typedResult = result as { success: boolean, totalNodes: number, processedNodes: number, chunks: number, textNodes: Array<any> }; const summaryText = ` Scan completed: - Found ${typedResult.totalNodes} text nodes - Processed in ${typedResult.chunks} chunks `; return { content: [ initialStatus, { type: "text" as const, text: summaryText }, { type: "text" as const, text: JSON.stringify(typedResult.textNodes, null, 2) } ], }; } // If chunking wasn't used or wasn't reported in the result format, return the result as is return { content: [ initialStatus, { type: "text", text: JSON.stringify(result, null, 2), }, ], }; } catch (error) { return { content: [ { type: "text", text: `Error scanning text nodes: ${error instanceof Error ? error.message : String(error) }`, }, ], }; } } );

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/pipethedev/Talk-to-Figma-MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server