Skip to main content
Glama

OpenRouter MCP Server

šŸš€ A powerful Model Context Protocol (MCP) server that provides seamless access to multiple AI models through OpenRouter's unified API.

NPM Version License: MIT Python 3.9+

✨ Features

  • 🧠 Collective Intelligence System: Advanced multi-model collaboration and consensus building

    • 5 specialized MCP tools for ensemble reasoning and intelligent decision-making

    • Multi-model consensus with automated agreement analysis and quality scoring

    • Ensemble reasoning using specialized models for different task aspects

    • Adaptive model selection based on task context, requirements, and performance metrics

    • Cross-model validation for content quality assurance and accuracy verification

    • Collaborative problem-solving through iterative multi-model interaction

  • šŸ¤– Multi-Model Access: Chat with GPT-4o, Claude 3.5, Llama 3.3, Gemini 2.5, and 200+ other AI models

  • šŸ–¼ļø Vision/Multimodal Support: Analyze images and visual content with vision-capable models

    • Support for base64-encoded images and image URLs

    • Automatic image resizing and optimization for API limits

    • Compatible with GPT-4o, Claude 3.5, Gemini 2.5, Llama Vision, and more

  • šŸš€ Latest Models (Jan 2025): Always up-to-date with the newest models

    • OpenAI o1, GPT-4o, GPT-4 Turbo

    • Claude 3.5 Sonnet, Claude 3 Opus

    • Gemini 2.5 Pro/Flash (1M+ context)

    • DeepSeek V3, Grok 2, and more

  • ⚔ Intelligent Caching: Smart model list caching for improved performance

    • Dual-layer memory + file caching with configurable TTL

    • Automatic model metadata enhancement and categorization

    • Advanced filtering by provider, category, capabilities, and performance tiers

    • Statistics tracking and cache optimization

  • šŸ·ļø Rich Metadata: Comprehensive model information with intelligent extraction

    • Automatic provider detection (OpenAI, Anthropic, Google, Meta, DeepSeek, XAI, etc.)

    • Smart categorization (chat, image, audio, embedding, reasoning, code, multimodal)

    • Advanced capability detection (vision, functions, tools, JSON mode, streaming)

    • Performance tiers (premium/standard/economy) and cost analysis

    • Version parsing with family identification and latest model detection

    • Quality scoring system (0-10) based on context length, pricing, and capabilities

  • šŸ”„ Streaming Support: Real-time response streaming for better user experience

  • šŸ“Š Advanced Model Benchmarking: Comprehensive performance analysis system

    • Side-by-side model comparison with detailed metrics (response time, cost, quality, throughput)

    • Category-based model selection (chat, code, reasoning, multimodal)

    • Weighted performance analysis for different use cases

    • Multiple report formats (Markdown, CSV, JSON)

    • Historical benchmark tracking and trend analysis

    • 5 MCP tools for seamless integration with Claude Desktop

  • šŸ’° Usage Tracking: Monitor API usage, costs, and token consumption

  • šŸ›”ļø Error Handling: Robust error handling with detailed logging

  • šŸ”§ Easy Setup: One-command installation with npx

  • šŸ–„ļø Claude Desktop Integration: Seamless integration with Claude Desktop app

  • šŸ“š Full MCP Compliance: Implements Model Context Protocol standards

šŸš€ Quick Start

# Initialize configuration npx @physics91/openrouter-mcp init # Start the server npx @physics91/openrouter-mcp start

Option 2: Global Installation

# Install globally npm install -g @physics91/openrouter-mcp # Initialize and start openrouter-mcp init openrouter-mcp start

šŸ“‹ Prerequisites

  • Node.js 16+: Required for CLI interface

  • Python 3.9+: Required for the MCP server backend

  • OpenRouter API Key: Get one free at openrouter.ai

šŸ› ļø Installation & Configuration

1. Get Your OpenRouter API Key

  1. Visit OpenRouter

  2. Sign up for a free account

  3. Navigate to the API Keys section

  4. Create a new API key

2. Initialize the Server

npx @physics91/openrouter-mcp init

This will:

  • Prompt you for your OpenRouter API key

  • Create a .env configuration file

  • Optionally set up Claude Desktop integration

3. Start the Server

npx @physics91/openrouter-mcp start

The server will start on localhost:8000 by default.

šŸŽÆ Usage

Available Commands

# Show help npx openrouter-mcp --help # Initialize configuration npx openrouter-mcp init # Start the server npx openrouter-mcp start [options] # Check server status npx openrouter-mcp status # Configure Claude Desktop integration npx openrouter-mcp install-claude # Configure Claude Code CLI integration npx openrouter-mcp install-claude-code

Start Server Options

# Custom port and host npx openrouter-mcp start --port 9000 --host 0.0.0.0 # Enable verbose logging npx openrouter-mcp start --verbose # Enable debug mode npx openrouter-mcp start --debug

šŸ¤– Claude Desktop Integration

Automatic Setup

npx openrouter-mcp install-claude

This automatically configures Claude Desktop to use OpenRouter models.

Manual Setup

Add to your Claude Desktop config file:

macOS: ~/Library/Application Support/Claude/claude_desktop_config.json Windows: %APPDATA%/Claude/claude_desktop_config.json Linux: ~/.config/claude/claude_desktop_config.json

{ "mcpServers": { "openrouter": { "command": "npx", "args": ["openrouter-mcp", "start"], "env": { "OPENROUTER_API_KEY": "your-openrouter-api-key" } } } }

Then restart Claude Desktop.

šŸ’» Claude Code CLI Integration

Automatic Setup

npx openrouter-mcp install-claude-code

This automatically configures Claude Code CLI to use OpenRouter models.

Manual Setup

Add to your Claude Code CLI config file at ~/.claude/claude_code_config.json:

{ "mcpServers": { "openrouter": { "command": "npx", "args": ["openrouter-mcp", "start"], "env": { "OPENROUTER_API_KEY": "your-openrouter-api-key" } } } }

Usage with Claude Code CLI

Once configured, you can use OpenRouter models directly in your terminal:

# Chat with different AI models claude-code "Use GPT-4 to explain this complex algorithm" claude-code "Have Claude Opus review my Python code" claude-code "Ask Llama 2 to suggest optimizations" # Model discovery and comparison claude-code "List all available AI models and their pricing" claude-code "Compare GPT-4 and Claude Sonnet for code generation" # Usage tracking claude-code "Show my OpenRouter API usage for today" claude-code "Which AI models am I using most frequently?"

For detailed setup instructions, see Claude Code CLI Integration Guide.

šŸ› ļø Available MCP Tools

Once integrated with Claude Desktop or Claude Code CLI, you'll have access to these tools:

1. chat_with_model

Chat with any available AI model.

Parameters:

  • model: Model ID (e.g., "openai/gpt-4o", "anthropic/claude-3.5-sonnet")

  • messages: Conversation history

  • temperature: Creativity level (0.0-2.0)

  • max_tokens: Maximum response length

  • stream: Enable streaming responses

Example:

{ "model": "openai/gpt-4o", "messages": [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "Explain quantum computing"} ], "temperature": 0.7 }

2. list_available_models

Get comprehensive information about all available models with enhanced metadata.

Parameters:

  • filter_by: Optional filter by model name

  • provider: Filter by provider (openai, anthropic, google, etc.)

  • category: Filter by category (chat, image, reasoning, etc.)

  • capabilities: Filter by specific capabilities

  • performance_tier: Filter by tier (premium, standard, economy)

  • min_quality_score: Minimum quality score (0-10)

Returns:

  • Model IDs, names, descriptions with enhanced metadata

  • Provider and category classification

  • Detailed pricing and context information

  • Capability flags (vision, functions, streaming, etc.)

  • Performance metrics and quality scores

  • Version information and latest model indicators

3. get_usage_stats

Track your API usage and costs.

Parameters:

  • start_date: Start date (YYYY-MM-DD)

  • end_date: End date (YYYY-MM-DD)

Returns:

  • Total costs and token usage

  • Request counts

  • Model-specific breakdowns

4. chat_with_vision šŸ–¼ļø

Chat with vision-capable models by sending images.

Parameters:

  • model: Vision-capable model ID (e.g., "openai/gpt-4o", "anthropic/claude-3-opus", "google/gemini-pro-vision")

  • messages: Conversation history (supports both text and image content)

  • images: List of images (file paths, URLs, or base64 strings)

  • temperature: Creativity level (0.0-2.0)

  • max_tokens: Maximum response length

Image Format Support:

  • File paths: /path/to/image.jpg, ./image.png

  • URLs: https://example.com/image.jpg

  • Base64: Direct base64 strings (with or without data URI prefix)

Example - Multiple Images:

{ "model": "openai/gpt-4o", "messages": [ {"role": "user", "content": "Compare these images and describe the differences"} ], "images": [ {"data": "/home/user/image1.jpg", "type": "path"}, {"data": "https://example.com/image2.png", "type": "url"}, {"data": "...", "type": "base64"} ] }

Features:

  • Automatic image format detection and conversion

  • Image resizing for API size limits (20MB max)

  • Support for JPEG, PNG, GIF, and WebP formats

  • Batch processing of multiple images

5. list_vision_models šŸ–¼ļø

Get all vision-capable models.

Parameters: None

Returns:

  • List of models that support image analysis

  • Model capabilities and pricing information

  • Context window sizes for multimodal content

Example Vision Models:

  • openai/gpt-4o: OpenAI's latest multimodal model

  • openai/gpt-4o-mini: Fast and cost-effective vision model

  • anthropic/claude-3-opus: Most capable Claude vision model

  • anthropic/claude-3-sonnet: Balanced Claude vision model

  • google/gemini-pro-vision: Google's multimodal AI

  • meta-llama/llama-3.2-90b-vision-instruct: Meta's vision-capable Llama model

6. benchmark_models šŸ“Š

Compare multiple AI models with the same prompt.

Parameters:

  • models: List of model IDs to benchmark

  • prompt: The prompt to send to each model

  • temperature: Temperature setting (0.0-2.0)

  • max_tokens: Maximum response tokens

  • runs_per_model: Number of runs per model for averaging

Returns:

  • Performance metrics (response time, cost, tokens)

  • Model rankings by speed, cost, and reliability

  • Individual responses from each model

7. compare_model_categories šŸ†

Compare the best models from different categories.

Parameters:

  • categories: List of categories to compare

  • prompt: Test prompt

  • models_per_category: Number of top models per category

Returns:

  • Category-wise comparison results

  • Best performers in each category

8. get_benchmark_history šŸ“š

Retrieve historical benchmark results.

Parameters:

  • limit: Maximum number of results to return

  • days_back: Number of days to look back

  • model_filter: Optional model ID filter

Returns:

  • List of past benchmark results

  • Performance trends over time

  • Summary statistics

9. export_benchmark_report šŸ“„

Export benchmark results in different formats.

Parameters:

  • benchmark_file: Benchmark result file to export

  • format: Output format ("markdown", "csv", "json")

  • output_file: Optional custom output filename

Returns:

  • Exported report file path

  • Export status and summary

10. compare_model_performance āš–ļø

Advanced model comparison with weighted metrics.

Parameters:

  • models: List of model IDs to compare

  • weights: Metric weights (speed, cost, quality, throughput)

  • include_cost_analysis: Include detailed cost analysis

Returns:

  • Weighted performance rankings

  • Cost-effectiveness analysis

  • Usage recommendations for different scenarios


🧠 Collective Intelligence Tools

The following advanced tools leverage multiple AI models for enhanced accuracy and insights:

11. collective_chat_completion šŸ¤

Generate chat completion using collective intelligence with multiple models to reach consensus.

Parameters:

  • prompt: The prompt to process collectively

  • models: Optional list of specific models to use

  • strategy: Consensus strategy ("majority_vote", "weighted_average", "confidence_threshold")

  • min_models: Minimum number of models to use (default: 3)

  • max_models: Maximum number of models to use (default: 5)

  • temperature: Sampling temperature (default: 0.7)

  • system_prompt: Optional system prompt for all models

Returns:

  • consensus_response: The agreed-upon response

  • agreement_level: Level of agreement between models

  • confidence_score: Confidence in the consensus

  • participating_models: List of models that participated

  • individual_responses: Responses from each model

  • quality_metrics: Accuracy, consistency, and completeness scores

12. ensemble_reasoning šŸŽÆ

Perform ensemble reasoning using specialized models for different aspects of complex problems.

Parameters:

  • problem: Problem to solve with ensemble reasoning

  • task_type: Type of task ("reasoning", "analysis", "creative", "factual", "code_generation")

  • decompose: Whether to decompose the problem into subtasks

  • models: Optional list of specific models to use

  • temperature: Sampling temperature (default: 0.7)

Returns:

  • final_result: The combined reasoning result

  • subtask_results: Results from individual subtasks

  • model_assignments: Which models handled which subtasks

  • reasoning_quality: Quality metrics for the reasoning process

  • processing_time: Total processing time

  • strategy_used: Decomposition strategy used

13. adaptive_model_selection šŸŽ›ļø

Intelligently select the best model for a given task using adaptive routing.

Parameters:

  • query: Query for adaptive model selection

  • task_type: Type of task ("reasoning", "creative", "factual", "code_generation", "analysis")

  • performance_requirements: Performance requirements (accuracy, speed thresholds)

  • constraints: Task constraints (max cost, timeout, etc.)

Returns:

  • selected_model: The chosen model ID

  • selection_reasoning: Why this model was selected

  • confidence: Confidence in the selection (0-1)

  • alternative_models: Other viable options with scores

  • routing_metrics: Performance metrics used in selection

  • expected_performance: Predicted performance characteristics

14. cross_model_validation āœ…

Validate content quality and accuracy across multiple models for quality assurance.

Parameters:

  • content: Content to validate across models

  • validation_criteria: Specific validation criteria (e.g., "factual_accuracy", "technical_correctness")

  • models: Optional list of models to use for validation

  • threshold: Validation threshold (0-1, default: 0.7)

Returns:

  • validation_result: Overall validation result ("VALID" or "INVALID")

  • validation_score: Numerical validation score (0-1)

  • validation_issues: Issues found by multiple models

  • model_validations: Individual validation results from each model

  • recommendations: Suggested improvements

  • confidence: Confidence in the validation result

15. collaborative_problem_solving šŸ¤–

Solve complex problems through collaborative multi-model interaction and iterative refinement.

Parameters:

  • problem: Problem to solve collaboratively

  • requirements: Problem requirements and constraints

  • constraints: Additional constraints (budget, time, resources)

  • max_iterations: Maximum number of iteration rounds (default: 3)

  • models: Optional list of specific models to use

Returns:

  • final_solution: The collaborative solution

  • solution_path: Step-by-step solution development

  • alternative_solutions: Alternative approaches considered

  • collaboration_quality: Quality metrics for the collaboration

  • component_contributions: Individual model contributions

  • convergence_metrics: How the solution evolved over iterations


šŸ”§ Configuration

Environment Variables

Create a .env file in your project directory:

# OpenRouter API Configuration OPENROUTER_API_KEY=your-api-key-here OPENROUTER_APP_NAME=openrouter-mcp OPENROUTER_HTTP_REFERER=https://localhost # Server Configuration HOST=localhost PORT=8000 LOG_LEVEL=info # Cache Configuration CACHE_TTL_HOURS=1 CACHE_MAX_ITEMS=1000 CACHE_FILE=openrouter_model_cache.json

Configuration Options

Variable

Description

Default

OPENROUTER_API_KEY

Your OpenRouter API key

Required

OPENROUTER_APP_NAME

App identifier for tracking

"openrouter-mcp"

OPENROUTER_HTTP_REFERER

HTTP referer header

"

https://localhost

"

HOST

Server bind address

"localhost"

PORT

Server port

"8000"

LOG_LEVEL

Logging level

"info"

CACHE_TTL_HOURS

Model cache TTL in hours

"1"

CACHE_MAX_ITEMS

Max items in memory cache

"1000"

CACHE_FILE

Cache file path

"openrouter_model_cache.json"

Here are some popular models available through OpenRouter:

OpenAI Models

  • openai/gpt-4o: Most capable multimodal GPT-4 model (text + vision)

  • openai/gpt-4o-mini: Fast and cost-effective with vision support

  • openai/gpt-4: Most capable text-only GPT-4 model

  • openai/gpt-3.5-turbo: Fast and cost-effective text model

Anthropic Models

  • anthropic/claude-3-opus: Most capable Claude model (text + vision)

  • anthropic/claude-3-sonnet: Balanced capability and speed (text + vision)

  • anthropic/claude-3-haiku: Fast and efficient (text + vision)

Open Source Models

  • meta-llama/llama-3.2-90b-vision-instruct: Meta's flagship vision model

  • meta-llama/llama-3.2-11b-vision-instruct: Smaller vision-capable Llama

  • meta-llama/llama-2-70b-chat: Meta's text-only flagship model

  • mistralai/mixtral-8x7b-instruct: Efficient mixture of experts

  • microsoft/wizardlm-2-8x22b: High-quality instruction following

Specialized Models

  • google/gemini-pro-vision: Google's multimodal AI (text + vision)

  • google/gemini-pro: Google's text-only model

  • cohere/command-r-plus: Great for RAG applications

  • perplexity/llama-3-sonar-large-32k-online: Web-connected model

Use list_available_models to see all available models and their pricing.

šŸ› Troubleshooting

Common Issues

1. Python not found

# Check Python installation python --version # If not installed, download from python.org # Make sure Python is in your PATH

2. Missing Python dependencies

# Install manually if needed pip install -r requirements.txt # For multimodal/vision features pip install Pillow>=10.0.0

3. API key not configured

# Re-run initialization npx openrouter-mcp init

4. Port already in use

# Use a different port npx openrouter-mcp start --port 9000

5. Claude Desktop not detecting server

  • Restart Claude Desktop after configuration

  • Check config file path and format

  • Verify API key is correct

Debug Mode

Enable debug logging for detailed troubleshooting:

npx openrouter-mcp start --debug

Status Check

Check server configuration and status:

npx openrouter-mcp status

🧪 Development

Running Tests

# Install development dependencies pip install -r requirements-dev.txt # Run tests npm run test # Run tests with coverage npm run test:coverage # Lint code npm run lint # Format code npm run format

Project Structure

openrouter-mcp/ ā”œā”€ā”€ bin/ # CLI scripts │ ā”œā”€ā”€ openrouter-mcp.js # Main CLI entry point │ └── check-python.js # Python environment checker ā”œā”€ā”€ src/openrouter_mcp/ # Python MCP server │ ā”œā”€ā”€ client/ # OpenRouter API client │ │ └── openrouter.py # Main API client with vision support │ ā”œā”€ā”€ handlers/ # MCP tool handlers │ │ ā”œā”€ā”€ chat.py # Text-only chat handlers │ │ ā”œā”€ā”€ multimodal.py # Vision/multimodal handlers │ │ └── benchmark.py # Model benchmarking handlers │ └── server.py # Main server entry point ā”œā”€ā”€ tests/ # Test suite │ ā”œā”€ā”€ test_chat.py # Chat functionality tests │ ā”œā”€ā”€ test_multimodal.py # Multimodal functionality tests │ └── test_benchmark.py # Benchmarking functionality tests ā”œā”€ā”€ examples/ # Usage examples │ └── multimodal_example.py # Multimodal usage examples ā”œā”€ā”€ docs/ # Documentation ā”œā”€ā”€ requirements.txt # Python dependencies (includes Pillow) └── package.json # Node.js package config

šŸ“š Documentation

Integration Guides

Feature Guides

Development

External Resources

šŸ¤ Contributing

We welcome contributions! Please see our Contributing Guide for details.

  1. Fork the repository

  2. Create a feature branch

  3. Make your changes

  4. Add tests

  5. Submit a pull request

šŸ“„ License

This project is licensed under the MIT License - see the LICENSE file for details.

šŸ™ Acknowledgments

  • OpenRouter for providing access to multiple AI models

  • FastMCP for the excellent MCP framework

  • Anthropic for the Model Context Protocol specification


Made with ā¤ļø for the AI community

Need help? Open an issue or check our documentation!

-
security - not tested
A
license - permissive license
-
quality - not tested

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/physics91/openrouter-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server