Skip to main content
Glama
panther-labs

Panther MCP Server

Official

get_data_model

Retrieve detailed information about a Panther data model, including Python body code and UDM mappings for security monitoring analysis.

Instructions

Get detailed information about a Panther data model, including the mappings and body

Returns complete data model information including Python body code and UDM mappings.

Permissions:{'all_of': ['View Rules']}

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
data_model_idYesThe ID of the data model to fetch

Implementation Reference

  • Complete implementation of the 'get_data_model' MCP tool. Decorated with @mcp_tool for auto-registration using the function name as tool name. Defines input schema via Annotated[str, Field(...)] for 'data_model_id' parameter. The function body fetches the data model details from the Panther REST API endpoint '/data-models/{data_model_id}', handles 404 (not found) and other exceptions, returning structured JSON responses.
    @mcp_tool( annotations={ "permissions": all_perms(Permission.RULE_READ), "readOnlyHint": True, } ) async def get_data_model( data_model_id: Annotated[ str, Field( description="The ID of the data model to fetch", examples=["MyDataModel", "AWS_CloudTrail", "StandardUser"], ), ], ) -> dict[str, Any]: """Get detailed information about a Panther data model, including the mappings and body Returns complete data model information including Python body code and UDM mappings. """ logger.info(f"Fetching data model details for data model ID: {data_model_id}") try: async with get_rest_client() as client: # Allow 404 as a valid response to handle not found case result, status = await client.get( f"/data-models/{data_model_id}", expected_codes=[200, 404] ) if status == 404: logger.warning(f"No data model found with ID: {data_model_id}") return { "success": False, "message": f"No data model found with ID: {data_model_id}", } logger.info( f"Successfully retrieved data model details for data model ID: {data_model_id}" ) return {"success": True, "data_model": result} except Exception as e: logger.error(f"Failed to get data model details: {str(e)}") return { "success": False, "message": f"Failed to get data model details: {str(e)}", }
  • Calls register_all_tools(mcp) in the main server setup, which registers all decorated tools including 'get_data_model' with the FastMCP instance.
    register_all_tools(mcp)
  • Implementation of register_all_tools that iterates over the global _tool_registry (populated by @mcp_tool decorators), extracts metadata, and invokes mcp_instance.tool(name=func.__name__ or metadata['name'], ...) for each tool.
    def register_all_tools(mcp_instance) -> None: """ Register all tools marked with @mcp_tool with the given MCP instance. Args: mcp_instance: The FastMCP instance to register tools with """ logger.info(f"Registering {len(_tool_registry)} tools with MCP") # Sort tools by name sorted_funcs = sorted(_tool_registry, key=lambda f: f.__name__) for tool in sorted_funcs: logger.debug(f"Registering tool: {tool.__name__}") # Get tool metadata if it exists metadata = getattr(tool, "_mcp_tool_metadata", {}) annotations = metadata.get("annotations", {}) # Create tool decorator with metadata tool_decorator = mcp_instance.tool( name=metadata.get("name"), description=metadata.get("description"), annotations=annotations, ) if annotations and annotations.get("permissions"): if not tool.__doc__: tool.__doc__ = "" tool.__doc__ += f"\n\n Permissions:{annotations.get('permissions')}" # Register the tool tool_decorator(tool) logger.info("All tools registered successfully")

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/panther-labs/mcp-panther'

If you have feedback or need assistance with the MCP directory API, please join our Discord server