Skip to main content
Glama

Azure Data Explorer MCP Server

CI codecov License: MIT Python 3.12

A (MCP) server that enables AI assistants to execute KQL queries and explore Azure Data Explorer (ADX/Kusto) databases through standardized interfaces.

This server provides seamless access to Azure Data Explorer and Eventhouse (in Microsoft Fabric) clusters, allowing AI assistants to query and analyze your data using the powerful Kusto Query Language.

Features

Query Execution

  • Execute KQL queries - Run arbitrary KQL queries against your ADX database

  • Structured results - Get results formatted as JSON for easy consumption

Database Discovery

  • List tables - Discover all tables in your database

  • View schemas - Inspect table schemas and column types

  • Sample data - Preview table contents with configurable sample sizes

  • Table statistics - Get detailed metadata including row counts and storage size

Authentication

  • DefaultAzureCredential - Supports Azure CLI, Managed Identity, and more

  • Workload Identity - Native support for AKS workload identity

  • Flexible credentials - Works with multiple Azure authentication methods

Deployment Options

  • Multiple transports - stdio (default), HTTP, and Server-Sent Events (SSE)

  • Docker support - Production-ready container images with security best practices

  • Dev Container - Seamless development experience with GitHub Codespaces

The list of tools is configurable, so you can choose which tools you want to make available to the MCP client. This is useful if you don't use certain functionality or if you don't want to take up too much of the context window.

Related MCP server: Metabase MCP Server

Usage

  1. Login to your Azure account which has the permission to the ADX cluster using Azure CLI.

  2. Configure the environment variables for your ADX cluster, either through a .env file or system environment variables:

# Required: Azure Data Explorer configuration ADX_CLUSTER_URL=https://yourcluster.region.kusto.windows.net ADX_DATABASE=your_database # Optional: Azure Workload Identity credentials # AZURE_TENANT_ID=your-tenant-id # AZURE_CLIENT_ID=your-client-id # ADX_TOKEN_FILE_PATH=/var/run/secrets/azure/tokens/azure-identity-token # Optional: Custom MCP Server configuration ADX_MCP_SERVER_TRANSPORT=stdio # Choose between http/sse/stdio, default = stdio # Optional: Only relevant for non-stdio transports ADX_MCP_BIND_HOST=127.0.0.1 # default = 127.0.0.1 ADX_MCP_BIND_PORT=8080 # default = 8080

Azure Workload Identity Support

The server now uses WorkloadIdentityCredential by default when running in Azure Kubernetes Service (AKS) environments with workload identity configured. It prioritizes the use of WorkloadIdentityCredential whenever the necessary environment variables are present.

For AKS with Azure Workload Identity, you only need to:

  1. Make sure the pod has AZURE_TENANT_ID and AZURE_CLIENT_ID environment variables set

  2. Ensure the token file is mounted at the default path or specify a custom path with ADX_TOKEN_FILE_PATH

If these environment variables are not present, the server will automatically fall back to DefaultAzureCredential, which tries multiple authentication methods in sequence.

  1. Add the server configuration to your client configuration file. For example, for Claude Desktop:

{ "mcpServers": { "adx": { "command": "uv", "args": [ "--directory", "<full path to adx-mcp-server directory>", "run", "src/adx_mcp_server/main.py" ], "env": { "ADX_CLUSTER_URL": "https://yourcluster.region.kusto.windows.net", "ADX_DATABASE": "your_database" } } } }

Note: if you see Error: spawn uv ENOENT in Claude Desktop, you may need to specify the full path to uv or set the environment variable NO_UV=1 in the configuration.

Docker Usage

This project includes Docker support for easy deployment and isolation.

Building the Docker Image

Build the Docker image using:

docker build -t adx-mcp-server .

Running with Docker

You can run the server using Docker in several ways:

Using docker run directly:

docker run -it --rm \ -e ADX_CLUSTER_URL=https://yourcluster.region.kusto.windows.net \ -e ADX_DATABASE=your_database \ -e AZURE_TENANT_ID=your_tenant_id \ -e AZURE_CLIENT_ID=your_client_id \ adx-mcp-server

Using docker-compose:

Create a .env file with your Azure Data Explorer credentials and then run:

docker-compose up

Running with Docker in Claude Desktop

To use the containerized server with Claude Desktop, update the configuration to use Docker with the environment variables:

{ "mcpServers": { "adx": { "command": "docker", "args": [ "run", "--rm", "-i", "-e", "ADX_CLUSTER_URL", "-e", "ADX_DATABASE", "-e", "AZURE_TENANT_ID", "-e", "AZURE_CLIENT_ID", "-e", "ADX_TOKEN_FILE_PATH", "adx-mcp-server" ], "env": { "ADX_CLUSTER_URL": "https://yourcluster.region.kusto.windows.net", "ADX_DATABASE": "your_database", "AZURE_TENANT_ID": "your_tenant_id", "AZURE_CLIENT_ID": "your_client_id", "ADX_TOKEN_FILE_PATH": "/var/run/secrets/azure/tokens/azure-identity-token" } } } }

This configuration passes the environment variables from Claude Desktop to the Docker container by using the -e flag with just the variable name, and providing the actual values in the env object.

Using Docker with HTTP Transport

For HTTP mode deployment, you can use the following Docker configuration:

{ "mcpServers": { "adx": { "command": "docker", "args": [ "run", "--rm", "-i", "-p", "8080:8080", "-e", "ADX_CLUSTER_URL", "-e", "ADX_DATABASE", "-e", "ADX_MCP_SERVER_TRANSPORT", "-e", "ADX_MCP_BIND_HOST", "-e", "ADX_MCP_BIND_PORT", "adx-mcp-server" ], "env": { "ADX_CLUSTER_URL": "https://yourcluster.region.kusto.windows.net", "ADX_DATABASE": "your_database", "ADX_MCP_SERVER_TRANSPORT": "http", "ADX_MCP_BIND_HOST": "0.0.0.0", "ADX_MCP_BIND_PORT": "8080" } } } }

Using as a Dev Container / GitHub Codespace

This repository can also be used as a development container for a seamless development experience. The dev container setup is located in the devcontainer-feature/adx-mcp-server folder.

For more details, check the devcontainer README.

Development

Contributions are welcome! Please open an issue or submit a pull request if you have any suggestions or improvements.

This project uses uv to manage dependencies. Install uv following the instructions for your platform:

curl -LsSf https://astral.sh/uv/install.sh | sh

You can then create a virtual environment and install the dependencies with:

uv venv source .venv/bin/activate # On Unix/macOS .venv\Scripts\activate # On Windows uv pip install -e .

Project Structure

The project has been organized with a src directory structure:

adx-mcp-server/ ├── src/ │ └── adx_mcp_server/ │ ├── __init__.py # Package initialization │ ├── server.py # MCP server implementation │ ├── main.py # Main application logic ├── Dockerfile # Docker configuration ├── docker-compose.yml # Docker Compose configuration ├── .dockerignore # Docker ignore file ├── pyproject.toml # Project configuration └── README.md # This file

Testing

The project includes a comprehensive test suite that ensures functionality and helps prevent regressions.

Run the tests with pytest:

# Install development dependencies uv pip install -e ".[dev]" # Run the tests pytest # Run with coverage report pytest --cov=src --cov-report=term-missing

Tests are organized into:

  • Configuration validation tests

  • Server functionality tests

  • Error handling tests

  • Main application tests

When adding new features, please also add corresponding tests.

Available Tools

Tool

Category

Description

Parameters

execute_query

Query

Execute a KQL query against Azure Data Explorer

query

(string) - KQL query to execute

list_tables

Discovery

List all tables in the configured database

None

get_table_schema

Discovery

Get the schema for a specific table

table_name

(string) - Name of the table

sample_table_data

Discovery

Get sample data from a table

table_name

(string),

sample_size

(int, default: 10)

get_table_details

Discovery

Get table statistics and metadata

table_name

(string) - Name of the table

Configuration

Required Environment Variables

Variable

Description

Example

ADX_CLUSTER_URL

Azure Data Explorer cluster URL

https://yourcluster.region.kusto.windows.net

ADX_DATABASE

Database name to connect to

your_database

Optional Environment Variables

Azure Workload Identity (for AKS)

Variable

Description

Default

AZURE_TENANT_ID

Azure AD tenant ID

-

AZURE_CLIENT_ID

Azure AD client/application ID

-

ADX_TOKEN_FILE_PATH

Path to workload identity token file

/var/run/secrets/azure/tokens/azure-identity-token

MCP Server Configuration

Variable

Description

Default

ADX_MCP_SERVER_TRANSPORT

Transport mode:

stdio

,

http

, or

sse

stdio

ADX_MCP_BIND_HOST

Host to bind to (HTTP/SSE only)

127.0.0.1

ADX_MCP_BIND_PORT

Port to bind to (HTTP/SSE only)

8080

Logging

Variable

Description

Default

LOG_LEVEL

Logging level:

DEBUG

,

INFO

,

WARNING

,

ERROR

INFO

License

MIT


One-click Deploy
A
security – no known vulnerabilities
A
license - permissive license
A
quality - confirmed to work

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/pab1it0/adx-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server