Skip to main content
Glama
onimsha

Airtable OAuth MCP Server

by onimsha

search_records

Filter Airtable records using custom formulas to find specific data in your base. This tool enables targeted searches by applying formula-based criteria to retrieve matching records from specified tables.

Instructions

Search records using a formula filter

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
base_idYesThe Airtable base ID
table_idYesThe table ID or name
filter_by_formulaYesAirtable formula for filtering
viewNoView name or ID
fieldsNoSpecific fields to include (field name or array of field names)

Implementation Reference

  • Primary handler for the 'search_records' MCP tool. Authenticates the client, normalizes the fields parameter to handle string or list input, constructs ListRecordsOptions, calls the AirtableClient.search_records helper, and returns formatted records with id, fields, and createdTime.
    @self.mcp.tool(description="Search records using a formula filter") async def search_records( base_id: Annotated[str, Field(description="The Airtable base ID")], table_id: Annotated[str, Field(description="The table ID or name")], filter_by_formula: Annotated[ str, Field(description="Airtable formula for filtering") ], view: Annotated[str | None, Field(description="View name or ID")] = None, fields: Annotated[ str | list[str] | None, Field( description="Specific fields to include (field name or array of field names)" ), ] = None, ) -> list[dict[str, Any]]: """Search records using a formula filter.""" client = await self._get_authenticated_client() # Normalize fields parameter normalized_fields = None if fields is not None: if isinstance(fields, str): # Check if it's a JSON-encoded array string if fields.startswith("[") and fields.endswith("]"): try: import json normalized_fields = json.loads(fields) except (json.JSONDecodeError, ValueError): # If JSON parsing fails, treat as single field name normalized_fields = [fields] else: # Single field name normalized_fields = [fields] else: normalized_fields = fields options = ListRecordsOptions( view=view, fields=normalized_fields, ) records = await client.search_records( base_id, table_id, filter_by_formula, options, ) return [ { "id": record.id, "fields": record.fields, "createdTime": record.created_time, } for record in records ]
  • Supporting helper method on AirtableClient that applies the filter_by_formula to ListRecordsOptions and delegates to list_records method.
    async def search_records( self, base_id: str, table_id: str, filter_by_formula: str, options: ListRecordsOptions | None = None, ) -> list[AirtableRecord]: """Search records using a formula filter. Args: base_id: The Airtable base ID table_id: The table ID or name filter_by_formula: Airtable formula for filtering options: Additional options for the search Returns: List of matching records """ logger.info( f"Searching records in {base_id}/{table_id} with formula: {filter_by_formula}" ) # Merge filter with existing options search_options = options or ListRecordsOptions() search_options.filter_by_formula = filter_by_formula return await self.list_records(base_id, table_id, search_options)
  • Pydantic schema model SearchRecordsArgs closely matching the search_records tool parameters, tested separately in unit tests.
    class SearchRecordsArgs(BaseArgs): """Arguments for search_records tool.""" base_id: str = Field(description="The Airtable base ID") table_id: str = Field(description="The table ID or name") filter_by_formula: str = Field(description="Airtable formula for filtering") max_records: int | None = Field( default=None, description="Maximum number of records to return" ) view: str | None = Field(default=None, description="View name or ID") fields: list[str] | None = Field( default=None, description="Specific fields to include" )

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/onimsha/airtable-mcp-server-oauth'

If you have feedback or need assistance with the MCP directory API, please join our Discord server