Skip to main content
Glama

LLM Tool-Calling Assistant

by o6-webwork
client-sse.py1.12 kB
import asyncio import nest_asyncio from mcp import ClientSession from mcp.client.sse import sse_client nest_asyncio.apply() # Needed to run interactive python """ Make sure: 1. The server is running before running this script. 2. The server is configured to use SSE transport. 3. The server is listening on port 8050. To run the server: uv run server.py """ async def main(): # Connect to the server using SSE async with sse_client("http://localhost:8050/sse") as (read_stream, write_stream): async with ClientSession(read_stream, write_stream) as session: # Initialize the connection await session.initialize() # List available tools tools_result = await session.list_tools() print("Available tools:") for tool in tools_result.tools: print(f" - {tool.name}: {tool.description}") # Call our calculator tool result = await session.call_tool("add", arguments={"a": 2, "b": 3}) print(f"2 + 3 = {result.content[0].text}") if __name__ == "__main__": asyncio.run(main())

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/o6-webwork/mcp-template'

If you have feedback or need assistance with the MCP directory API, please join our Discord server