Skip to main content
Glama

Gitingest MCP Server

server.py1.87 kB
from typing import Annotated from gitingest import ingest_async from mcp.server.fastmcp import FastMCP from pydantic import Field # https://github.com/jlowin/fastmcp/issues/81#issuecomment-2714245145 mcp = FastMCP("Gitingest MCP Server", log_level="ERROR") @mcp.tool() async def ingest_git( source: Annotated[ str, Field( description="The source to analyze, which can be a URL (for a Git repository) or a local directory path." ), ], max_file_size: Annotated[ int, Field( description=( "Maximum allowed file size for file ingestion." "Files larger than this size are ignored, by default 10*1024*1024 (10 MB)." ) ), ] = 10 * 1024 * 1024, include_patterns: Annotated[ str, Field(description="Pattern or set of patterns specifying which files to include, e.q. '*.md, src/'"), ] = "", exclude_patterns: Annotated[ str, Field(description="Pattern or set of patterns specifying which files to exclude, e.q. '*.md, src/'"), ] = "", branch: Annotated[str, Field(description="The branch to clone and ingest.")] = "main", ) -> str: """ This function analyzes a source (URL or local path), clones the corresponding repository (if applicable), and processes its files according to the specified query parameters. It can return a summary, a tree-like structure of the files, or the content of the files. """ summary, tree, content = await ingest_async( source, max_file_size=max_file_size, include_patterns=include_patterns, exclude_patterns=exclude_patterns, branch=branch, ) return "\n\n".join( [ summary, tree, content, ] ) def main() -> None: mcp.run()

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/narumiruna/gitingest-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server