Skip to main content
Glama
nanyang12138

AI Research MCP Server

by nanyang12138

generate_weekly_summary

Create a weekly summary of AI research activity by aggregating papers, GitHub repositories, and Hugging Face models to track progress across multiple sources.

Instructions

Generate a comprehensive weekly summary of AI research activity

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
include_papersNoInclude papers section
include_reposNoInclude GitHub repos section
include_modelsNoInclude Hugging Face models section

Implementation Reference

  • The core handler function implementing the generate_weekly_summary tool logic: fetches weekly papers from multiple sources, trending repos, recent models, and formats into a markdown summary.
    async def _generate_weekly_summary( self, include_papers: bool = True, include_repos: bool = True, include_models: bool = True, ) -> str: """Generate weekly summary.""" sections = [] sections.append(f"# AI Research Weekly Summary\n*Generated: {datetime.now().strftime('%Y-%m-%d %H:%M')}*\n") if include_papers: hf_papers = await asyncio.to_thread(self.huggingface.get_daily_papers, days=7) arxiv_papers = await asyncio.to_thread(self.arxiv.get_latest_papers, days=7, max_results=50) pwc_papers = await asyncio.to_thread(self.papers_with_code.get_latest_papers, days=7) all_papers = hf_papers + arxiv_papers + pwc_papers sections.append(f"## 📄 This Week's Papers ({len(all_papers)})\n\n{self._format_papers(all_papers[:30])}") if include_repos: repos = await asyncio.to_thread(self.github.get_trending_repositories, period="weekly", max_results=30) sections.append(f"## 🔥 Trending Repositories ({len(repos)})\n\n{self._format_repos(repos[:20])}") if include_models: models = await asyncio.to_thread(self.huggingface.get_recent_models, days=7, limit=25) sections.append(f"## 🤖 New & Updated Models ({len(models)})\n\n{self._format_models(models[:15])}") return "\n\n".join(sections)
  • Tool registration in list_tools() handler, defining the tool name, description, and input schema.
    Tool( name="generate_weekly_summary", description="Generate a comprehensive weekly summary of AI research activity", inputSchema={ "type": "object", "properties": { "include_papers": { "type": "boolean", "description": "Include papers section", "default": True, }, "include_repos": { "type": "boolean", "description": "Include GitHub repos section", "default": True, }, "include_models": { "type": "boolean", "description": "Include Hugging Face models section", "default": True, }, }, }, ),
  • Input schema defining optional boolean parameters for including papers, repos, and models in the summary.
    inputSchema={ "type": "object", "properties": { "include_papers": { "type": "boolean", "description": "Include papers section", "default": True, }, "include_repos": { "type": "boolean", "description": "Include GitHub repos section", "default": True, }, "include_models": { "type": "boolean", "description": "Include Hugging Face models section", "default": True, }, }, }, ),
  • Dispatch logic in the main call_tool handler that invokes the weekly summary generator.
    elif name == "generate_weekly_summary": result = await self._generate_weekly_summary(**arguments)

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/nanyang12138/AI-Research-MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server