Enables searching and retrieving the latest AI/ML academic papers from arXiv, with support for filtering by keywords, research areas, and time ranges.
Provides access to GitHub's repository data for tracking trending AI projects, searching high-star repositories, and discovering open-source developments in artificial intelligence.
Allows retrieval of daily featured papers, trending models, and popular datasets from Hugging Face Hub, providing insights into the latest developments in machine learning models.
Enables access to research papers paired with their code implementations, helping discover reproducible AI research with available source code.
🔬 AI Research MCP Server
实时追踪 AI/LLM 研究进展的 MCP 服务器
📖 简介
一个基于 Model Context Protocol (MCP) 的智能服务器,帮助研究者和开发者实时追踪 AI/LLM 领域的最新进展。
🎯 核心功能
📚 多源集成 - arXiv、GitHub、Hugging Face、Papers with Code
🔍 智能搜索 - 按关键词、领域、时间范围搜索
📊 自动汇总 - 每日/每周研究进展自动生成
⚡ 高效缓存 - 智能缓存机制,减少 API 调用
🌍 覆盖全面 - 15+ AI 研究领域全覆盖
✨ 功能特点
📚 多数据源集成
arXiv - 搜索最新的 AI/ML 学术论文
Papers with Code - 获取带代码实现的热门论文
Hugging Face - 每日精选论文、热门模型和数据集
GitHub - 追踪高 star 的 AI 项目和 trending 仓库
🎯 覆盖的 AI 研究领域
核心 AI/ML: 大语言模型 (LLM)、Transformer、深度学习
多模态与生成: CLIP、Stable Diffusion、文本生成图像
机器人学: 具身智能、机械臂控制、导航
生物信息学: 蛋白质折叠、药物发现、基因组学
AI for Science: 科学计算、物理模拟
强化学习: 多智能体、策略梯度、离线 RL
图神经网络: 分子建模、知识图谱
高效 AI: 模型压缩、量化、LoRA
AI 安全: 对齐、可解释性、公平性
新兴方向: 联邦学习、持续学习、神经形态计算
🛠️ MCP 工具
search_latest_papers: 搜索最新 AI 论文
search_github_repos: 搜索热门 AI GitHub 仓库
get_daily_papers: 获取今日精选论文
get_trending_repos: 获取 GitHub trending 仓库
get_trending_models: 获取 Hugging Face 热门模型
search_by_area: 按研究领域搜索(LLM、视觉、机器人等)
generate_daily_summary: 生成每日 AI 研究汇总
generate_weekly_summary: 生成每周 AI 研究汇总
📊 MCP 资源
ai-research://daily-summary: 每日 AI 研究汇总(自动缓存)ai-research://weekly-summary: 每周 AI 研究汇总(自动缓存)
🚀 快速开始
前置要求
Python 3.10+
pip 包管理器
Claude Desktop (推荐) 或其他 MCP 客户端
安装步骤
💡 提示: 查看 QUICKSTART.md 获取更详细的安装指南
⚙️ 配置
环境变量(可选)
创建 .env 文件:
🔑 获取 GitHub Token
虽然可选,但强烈推荐配置以避免 API 速率限制
点击
Generate new token (classic)勾选
public_repo权限复制生成的 token
添加到
.env文件
💬 在 Claude Desktop 中使用
配置 Claude Desktop
编辑 Claude Desktop 配置文件:
操作系统 | 配置文件路径 |
macOS |
|
Windows |
|
Linux |
|
重启 Claude Desktop
配置完成后,重启 Claude Desktop 以加载 MCP 服务器。
在聊天窗口右下角应该能看到 🔌 图标,表示 MCP 服务器已连接。
📖 使用示例
在 Claude Desktop 中,你可以这样提问:
💡 查看 EXAMPLES.md 获取更多使用示例
技术架构
项目结构
缓存机制
为了减少 API 调用次数和提高响应速度,服务器实现了文件缓存:
GitHub API 结果缓存 1 小时
arXiv 搜索结果缓存 2 小时
每日/每周汇总缓存 24 小时
缓存文件存储在 .cache 目录(可通过环境变量配置)。
API 数据源
arXiv
API: arXiv API
限制: 每 3 秒最多 1 个请求
覆盖类别: cs.AI, cs.CL, cs.LG, cs.CV, cs.RO, q-bio.*, 等
GitHub
API: GitHub REST API v3
限制:
无 token: 60 请求/小时
有 token: 5000 请求/小时
推荐: 配置 GitHub Token
Hugging Face
API: Hugging Face Hub API
限制: 较宽松,建议使用缓存
数据: 每日论文、模型、数据集
Papers with Code
API: Papers with Code API
限制: 较宽松
特点: 论文 + 代码实现
🔧 故障排除
可能原因:
关键词太具体 → 尝试使用更通用的术语
时间范围太短 → 增加
days参数API 速率限制 → 等待几分钟后重试
网络问题 → 检查网络连接
解决方法: 配置 GITHUB_TOKEN 环境变量
速率限制对比:
❌ 无 Token: 60 请求/小时
✅ 有 Token: 5000 请求/小时
检查清单:
Python 版本 >= 3.10
依赖已安装:
pip install -e .配置文件路径正确
环境变量设置正确
删除缓存目录重新获取:
🆘 更多问题?查看 TROUBLESHOOTING.md 或 提交 Issue
👨💻 开发
运行测试
代码格式化
🤝 贡献
我们欢迎任何形式的贡献!
如何贡献
Fork 本仓库
创建你的特性分支 (
git checkout -b feature/AmazingFeature)提交你的更改 (
git commit -m 'Add some AmazingFeature')推送到分支 (
git push origin feature/AmazingFeature)开启一个 Pull Request
贡献指南
遵循现有代码风格
添加适当的测试
更新相关文档
确保所有测试通过
📄 许可证
本项目采用 MIT 许可证 - 查看 LICENSE 文件了解详情
🙏 致谢
特别感谢以下项目和服务:
Anthropic MCP - Model Context Protocol
arXiv API - 学术论文数据
GitHub API - 代码仓库数据
Hugging Face Hub - 模型和数据集
Papers with Code - 论文和代码配对
📝 更新日志
v0.1.0 (2025-10-28)
🎉 初始发布
✅ 集成 4 大数据源:arXiv、GitHub、Hugging Face、Papers with Code
✅ 实现 8 个 MCP 工具和 2 个 MCP 资源
✅ 智能缓存机制
✅ 覆盖 15+ AI 研究领域
✅ 完整的文档和示例
🗺️ 路线图
v0.2.0 (计划中)
添加 OpenReview 和 SemanticScholar 集成
支持自定义关键词订阅
改进缓存策略和性能优化
添加更多单元测试
v0.3.0 (未来)
Web 界面
邮件通知功能
导出为 PDF/HTML
可视化图表
v1.0.0 (长期)
多语言支持(完整中英文)
智能推荐算法
移动端支持
💬 社区
🌐 English Version
📖 Introduction
An intelligent server based on Model Context Protocol (MCP) that helps researchers and developers track the latest AI/LLM research progress in real-time.
🎯 Core Features
📚 Multi-source Integration - arXiv, GitHub, Hugging Face, Papers with Code
🔍 Smart Search - Search by keywords, domains, and time ranges
📊 Auto Summary - Automated daily/weekly research digest generation
⚡ Efficient Caching - Smart caching mechanism to reduce API calls
🌍 Comprehensive Coverage - 15+ AI research areas covered
✨ Features
📚 Multi-source Data Integration
arXiv - Search latest AI/ML academic papers
Papers with Code - Get popular papers with code implementations
Hugging Face - Daily featured papers, trending models and datasets
GitHub - Track high-star AI projects and trending repositories
🎯 Covered AI Research Areas
Core AI/ML: Large Language Models (LLM), Transformer, Deep Learning
Multimodal & Generation: CLIP, Stable Diffusion, Text-to-Image
Robotics: Embodied AI, Robot Arm Control, Navigation
Bioinformatics: Protein Folding, Drug Discovery, Genomics
AI for Science: Scientific Computing, Physics Simulation
Reinforcement Learning: Multi-agent, Policy Gradient, Offline RL
Graph Neural Networks: Molecular Modeling, Knowledge Graphs
Efficient AI: Model Compression, Quantization, LoRA
AI Safety: Alignment, Interpretability, Fairness
Emerging Directions: Federated Learning, Continual Learning, Neuromorphic Computing
🛠️ MCP Tools
search_latest_papers - Search latest AI papers
search_github_repos - Search trending AI GitHub repositories
get_daily_papers - Get today's featured papers
get_trending_repos - Get GitHub trending repositories
get_trending_models - Get Hugging Face trending models
search_by_area - Search by research area (LLM, Vision, Robotics, etc.)
generate_daily_summary - Generate daily AI research digest
generate_weekly_summary - Generate weekly AI research digest
📊 MCP Resources
ai-research://daily-summary- Daily AI research digest (auto-cached)ai-research://weekly-summary- Weekly AI research digest (auto-cached)
🚀 Quick Start
Prerequisites
Python 3.10+
pip package manager
Claude Desktop (recommended) or other MCP clients
Installation Steps
💡 Tip: See QUICKSTART.md for detailed installation guide
⚙️ Configuration
Environment Variables (Optional)
Create a .env file:
🔑 Getting GitHub Token
Although optional, highly recommended to avoid API rate limits
Visit GitHub Token Settings
Click
Generate new token (classic)Select
public_repopermissionCopy the generated token
Add to
.envfile
💬 Using with Claude Desktop
Configure Claude Desktop
Edit Claude Desktop configuration file:
OS | Configuration File Path |
macOS |
|
Windows |
|
Linux |
|
Restart Claude Desktop
After configuration, restart Claude Desktop to load the MCP server.
You should see a 🔌 icon in the bottom right corner of the chat window, indicating the MCP server is connected.
📖 Usage Examples
In Claude Desktop, you can ask questions like:
💡 See EXAMPLES.md for more usage examples
🏗️ Technical Architecture
Project Structure
Caching Mechanism
To reduce API calls and improve response speed, the server implements file caching:
GitHub API results cached for 1 hour
arXiv search results cached for 2 hours
Daily/weekly digests cached for 24 hours
Cache files are stored in the .cache directory (configurable via environment variables).
🌐 API Data Sources
arXiv
API: arXiv API
Limits: Maximum 1 request per 3 seconds
Coverage: cs.AI, cs.CL, cs.LG, cs.CV, cs.RO, q-bio.*, etc.
GitHub
API: GitHub REST API v3
Limits:
Without token: 60 requests/hour
With token: 5000 requests/hour
Recommendation: Configure GitHub Token
Hugging Face
API: Hugging Face Hub API
Limits: Relatively lenient, caching recommended
Data: Daily papers, models, datasets
Papers with Code
API: Papers with Code API
Limits: Relatively lenient
Features: Papers + code implementations
🔧 Troubleshooting
Possible reasons:
Keywords too specific → Try more general terms
Time range too short → Increase
daysparameterAPI rate limit → Wait a few minutes and retry
Network issues → Check network connection
Solution: Configure GITHUB_TOKEN environment variable
Rate limit comparison:
❌ Without Token: 60 requests/hour
✅ With Token: 5000 requests/hour
Checklist:
Python version >= 3.10
Dependencies installed:
pip install -e .Configuration file path correct
Environment variables set correctly
Delete cache directory to refresh:
🆘 More issues? Check TROUBLESHOOTING.md or Submit an Issue
👨💻 Development
Running Tests
Code Formatting
🤝 Contributing
We welcome all forms of contributions!
How to Contribute
Fork this repository
Create your feature branch (
git checkout -b feature/AmazingFeature)Commit your changes (
git commit -m 'Add some AmazingFeature')Push to the branch (
git push origin feature/AmazingFeature)Open a Pull Request
Contribution Guidelines
Follow existing code style
Add appropriate tests
Update relevant documentation
Ensure all tests pass
📄 License
This project is licensed under the MIT License - see LICENSE file for details
🙏 Acknowledgments
Special thanks to the following projects and services:
Anthropic MCP - Model Context Protocol
arXiv API - Academic paper data
GitHub API - Code repository data
Hugging Face Hub - Models and datasets
Papers with Code - Papers and code pairing
📝 Changelog
v0.1.0 (2025-10-28)
🎉 Initial Release
✅ Integrated 4 major data sources: arXiv, GitHub, Hugging Face, Papers with Code
✅ Implemented 8 MCP tools and 2 MCP resources
✅ Smart caching mechanism
✅ Coverage of 15+ AI research areas
✅ Complete documentation and examples
🗺️ Roadmap
v0.2.0 (Planned)
Add OpenReview and SemanticScholar integration
Support custom keyword subscriptions
Improve caching strategy and performance optimization
Add more unit tests
v0.3.0 (Future)
Web interface
Email notification feature
Export to PDF/HTML
Visualization charts
v1.0.0 (Long-term)
Multi-language support (full Chinese & English)
Smart recommendation algorithm
Mobile support
💬 Community
⭐ If you find it useful, please give us a Star!
如果这个项目对你有帮助,请给它一个 ⭐ Star!
If you find this project helpful, please give it a ⭐ Star!
Made with ❤️ by the AI Research Community
remote-capable server
The server can be hosted and run remotely because it primarily relies on remote services or has no dependency on the local environment.
Tools
Enables real-time tracking of AI/LLM research progress by searching and aggregating content from arXiv, GitHub, Hugging Face, and Papers with Code. Supports intelligent search, automated daily/weekly research summaries, and covers 15+ AI research areas with smart caching.
- 📖 简介
- ✨ 功能特点
- 🚀 快速开始
- ⚙️ 配置
- 💬 在 Claude Desktop 中使用
- 📖 使用示例
- 技术架构
- API 数据源
- 🔧 故障排除
- 👨💻 开发
- 🤝 贡献
- 📄 许可证
- 🙏 致谢
- 📝 更新日志
- 🗺️ 路线图
- 💬 社区
- 🌐 English Version
- 📖 Introduction
- ✨ Features
- 🚀 Quick Start
- ⚙️ Configuration
- 💬 Using with Claude Desktop
- 📖 Usage Examples
- 🏗️ Technical Architecture
- 🌐 API Data Sources
- 🔧 Troubleshooting
- 👨💻 Development
- 🤝 Contributing
- 📄 License
- 🙏 Acknowledgments
- 📝 Changelog
- 🗺️ Roadmap
- 💬 Community