Skip to main content
Glama

google_search

Search the web using Google Search via Gemini API to find information with sources and citations. Process results with optional instructions for analysis.

Instructions

Search the web using Google Search grounding via Gemini API. Provides search results with sources and citations.

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
queryYesSearch query to find information on the web
instructionNoOptional instruction for processing search results
modelNoGemini model id (e.g., gemini-2.5-flash)

Implementation Reference

  • MCP CallTool request handler specifically for the 'google_search' tool. Extracts and validates input arguments, invokes the callGoogleSearch helper, and formats the response as MCP content.
    if (name === "google_search") { const { query, instruction, model, } = (args ?? {}) as { query?: string; instruction?: string; model?: string; }; if (!query || typeof query !== "string" || query.trim() === "") { throw new Error("'query' must be provided as a non-empty string"); } const text = await callGoogleSearch({ query: query.trim(), instruction, model, }); return { content: [{ type: "text", text }] }; }
  • Helper function that executes the Google Search logic: builds a specialized prompt, calls the Gemini API with 'google_search' and 'url_context' tools enabled, processes the response to extract text output and appends search queries and source metadata.
    async function callGoogleSearch(params: GoogleSearchParams): Promise<string> { const apiKey = process.env.GOOGLE_API_KEY; if (!apiKey) { throw new Error("GOOGLE_API_KEY is not set"); } const model = params.model ?? "gemini-2.5-flash"; const endpoint = `https://generativelanguage.googleapis.com/v1beta/models/${encodeURIComponent(model)}:generateContent`; const promptText = `Role: You are a meticulous web researcher.\n\nPrimary directive:\n- If the user provides explicit URLs in the request, SKIP web search and use URL Context to analyze ONLY those URLs.\n- Otherwise, perform grounded Google Search and for ANY URL you cite, you MUST fetch it via URL Context and synthesize findings.\n- Prefer authoritative, up-to-date sources.\n- If coverage is insufficient, refine the query and continue internally up to 5 rounds. Stop once adequate.\n\nTask:${params.instruction ? `\n${params.instruction}` : ``}\n\nResearch focus: ${params.query}`; const tools: any[] = [{ google_search: {} }, { url_context: {} }]; const body = { contents: [ { parts: [{ text: promptText }], }, ], tools, } as const; const response = await fetch(endpoint + `?key=${encodeURIComponent(apiKey)}`, { method: "POST", headers: { "Content-Type": "application/json", }, body: JSON.stringify(body), }); if (!response.ok) { const text = await response.text(); throw new Error(`Gemini API error ${response.status}: ${text}`); } const json = (await response.json()) as any; // Try to get the primary text output const candidate = json?.candidates?.[0]; const textOut = candidate?.content?.parts?.map((p: any) => p?.text).filter(Boolean).join("\n"); // Collect grounding metadata for search results const groundingMeta = candidate?.grounding_metadata; const searchQueries = groundingMeta?.web_search_queries || []; const groundingChunks = groundingMeta?.grounding_chunks || []; let sourcesSection = ""; if (searchQueries.length > 0) { sourcesSection += "\n\nSearch Queries:\n" + searchQueries.map((q: string) => `- ${q}`).join("\n"); } if (groundingChunks.length > 0) { sourcesSection += "\n\nSources (Google Search):\n" + groundingChunks .map((chunk: any) => `- ${chunk.web?.title || "(no title)"}: ${chunk.web?.uri || "(no URL)"})`) .join("\n"); } if (textOut) { return textOut + sourcesSection; } // Fallback: return raw JSON if text not found return JSON.stringify(json, null, 2); }
  • src/index.ts:204-227 (registration)
    Registers the 'google_search' tool in the MCP tools list, including name, description, and input schema. This is returned in response to ListTools requests.
    { name: "google_search", description: "Search the web using Google Search grounding via Gemini API. Provides search results with sources and citations.", inputSchema: { type: "object", properties: { query: { type: "string", description: "Search query to find information on the web", }, instruction: { type: "string", description: "Optional instruction for processing search results", }, model: { type: "string", description: "Gemini model id (e.g., gemini-2.5-flash)", }, }, required: ["query"], }, }, ];
  • Input schema definition for the 'google_search' tool, specifying required 'query' parameter and optional 'instruction' and 'model'.
    inputSchema: { type: "object", properties: { query: { type: "string", description: "Search query to find information on the web", }, instruction: { type: "string", description: "Optional instruction for processing search results", }, model: { type: "string", description: "Gemini model id (e.g., gemini-2.5-flash)", }, }, required: ["query"], },
Install Server

Other Tools

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/nanameru/url-context-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server