Skip to main content
Glama

google_search

Retrieve web search results with sources and citations by querying Google Search via the Gemini API. Optional instructions allow for customized result processing.

Instructions

Search the web using Google Search grounding via Gemini API. Provides search results with sources and citations.

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
instructionNoOptional instruction for processing search results
modelNoGemini model id (e.g., gemini-2.5-flash)
queryYesSearch query to find information on the web

Implementation Reference

  • Core handler function for the google_search tool. Calls the Gemini API with google_search and url_context tools enabled, constructs a detailed research prompt, fetches the response, extracts text output, and appends search queries and grounding sources metadata.
    async function callGoogleSearch(params: GoogleSearchParams): Promise<string> { const apiKey = process.env.GOOGLE_API_KEY; if (!apiKey) { throw new Error("GOOGLE_API_KEY is not set"); } const model = params.model ?? "gemini-2.5-flash"; const endpoint = `https://generativelanguage.googleapis.com/v1beta/models/${encodeURIComponent(model)}:generateContent`; const promptText = `Role: You are a meticulous web researcher.\n\nPrimary directive:\n- If the user provides explicit URLs in the request, SKIP web search and use URL Context to analyze ONLY those URLs.\n- Otherwise, perform grounded Google Search and for ANY URL you cite, you MUST fetch it via URL Context and synthesize findings.\n- Prefer authoritative, up-to-date sources.\n- If coverage is insufficient, refine the query and continue internally up to 5 rounds. Stop once adequate.\n\nTask:${params.instruction ? `\n${params.instruction}` : ``}\n\nResearch focus: ${params.query}`; const tools: any[] = [{ google_search: {} }, { url_context: {} }]; const body = { contents: [ { parts: [{ text: promptText }], }, ], tools, } as const; const response = await fetch(endpoint + `?key=${encodeURIComponent(apiKey)}`, { method: "POST", headers: { "Content-Type": "application/json", }, body: JSON.stringify(body), }); if (!response.ok) { const text = await response.text(); throw new Error(`Gemini API error ${response.status}: ${text}`); } const json = (await response.json()) as any; // Try to get the primary text output const candidate = json?.candidates?.[0]; const textOut = candidate?.content?.parts?.map((p: any) => p?.text).filter(Boolean).join("\n"); // Collect grounding metadata for search results const groundingMeta = candidate?.grounding_metadata; const searchQueries = groundingMeta?.web_search_queries || []; const groundingChunks = groundingMeta?.grounding_chunks || []; let sourcesSection = ""; if (searchQueries.length > 0) { sourcesSection += "\n\nSearch Queries:\n" + searchQueries.map((q: string) => `- ${q}`).join("\n"); } if (groundingChunks.length > 0) { sourcesSection += "\n\nSources (Google Search):\n" + groundingChunks .map((chunk: any) => `- ${chunk.web?.title || "(no title)"}: ${chunk.web?.uri || "(no URL)"})`) .join("\n"); } if (textOut) { return textOut + sourcesSection; } // Fallback: return raw JSON if text not found return JSON.stringify(json, null, 2); }
  • Dispatch handler within CallToolRequestSchema for google_search. Validates input arguments, calls the core callGoogleSearch function, and formats the response.
    if (name === "google_search") { const { query, instruction, model, } = (args ?? {}) as { query?: string; instruction?: string; model?: string; }; if (!query || typeof query !== "string" || query.trim() === "") { throw new Error("'query' must be provided as a non-empty string"); } const text = await callGoogleSearch({ query: query.trim(), instruction, model, }); return { content: [{ type: "text", text }] }; }
  • src/index.ts:205-226 (registration)
    Registration of the google_search tool in the tools list provided to ListToolsRequestHandler, including name, description, and inputSchema.
    name: "google_search", description: "Search the web using Google Search grounding via Gemini API. Provides search results with sources and citations.", inputSchema: { type: "object", properties: { query: { type: "string", description: "Search query to find information on the web", }, instruction: { type: "string", description: "Optional instruction for processing search results", }, model: { type: "string", description: "Gemini model id (e.g., gemini-2.5-flash)", }, }, required: ["query"], }, },
  • TypeScript type definition for GoogleSearchParams used in the callGoogleSearch handler.
    type GoogleSearchParams = { query: string; instruction?: string; model?: string; };

Other Tools

Related Tools

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/nanameru/url-context-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server