Skip to main content
Glama

analyze_urls

Analyze and summarize content from one or multiple URLs using Google Gemini URL Context. Optionally add instructions, select a model, or enable grounding with Google Search for enhanced insights.

Instructions

Analyze and summarize the content of given URLs using Google Gemini URL Context. Provide an optional instruction and model.

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
instructionNoOptional instruction or task description
modelNoGemini model id (e.g., gemini-2.5-flash)
urlsYesOne URL string or an array of URLs (max 20)
use_google_searchNoEnable grounding with Google Search (adds google_search tool alongside URL context)

Implementation Reference

  • Core handler function that invokes the Gemini API with URL Context (and optional Google Search) to analyze the provided URLs, processes the response, and appends source metadata.
    async function callGeminiUrlContext(params: AnalyzeUrlsParams): Promise<string> { const apiKey = process.env.GOOGLE_API_KEY; if (!apiKey) { throw new Error("GOOGLE_API_KEY is not set"); } const model = params.model ?? "gemini-2.5-flash"; const endpoint = `https://generativelanguage.googleapis.com/v1beta/models/${encodeURIComponent(model)}:generateContent`; const promptText = `Guidelines:\n- Strictly use URL Context to retrieve ONLY the provided URLs\n- Do NOT perform web search or include external sources beyond these URLs\n- If a URL cannot be retrieved, note it explicitly\n\nTask:${params.instruction ? `\n${params.instruction}` : `\nProvide a concise, well-structured summary, key facts, and citations`}\n\nAnalyze these URLs:\n${params.urls.join("\n")}`; const tools: any[] = [{ url_context: {} }]; if (params.useGoogleSearch) { tools.push({ google_search: {} }); } const body = { contents: [ { parts: [{ text: promptText }], }, ], tools, } as const; const response = await fetch(endpoint + `?key=${encodeURIComponent(apiKey)}`, { method: "POST", headers: { "Content-Type": "application/json", }, body: JSON.stringify(body), }); if (!response.ok) { const text = await response.text(); throw new Error(`Gemini API error ${response.status}: ${text}`); } const json = (await response.json()) as any; // Try to get the primary text output const candidate = json?.candidates?.[0]; const textOut = candidate?.content?.parts?.map((p: any) => p?.text).filter(Boolean).join("\n"); // Collect URL context metadata for transparency if present const urlMeta: Array<{ retrieved_url?: string; url_retrieval_status?: string }> | undefined = candidate?.url_context_metadata?.url_metadata; const sourcesSection = Array.isArray(urlMeta) && urlMeta.length > 0 ? "\n\nSources (URL Context):\n" + urlMeta .map((m) => `- ${m.retrieved_url ?? "(unknown)"} [${m.url_retrieval_status ?? ""}]`) .join("\n") : ""; if (textOut) { return textOut + sourcesSection; } // Fallback: return raw JSON if text not found return JSON.stringify(json, null, 2); }
  • MCP CallToolRequest handler for analyze_urls: normalizes input parameters (handles string/array urls, validation), calls core handler, and formats response.
    if (name === "analyze_urls") { const { urls: rawUrls, instruction, model, use_google_search, } = (args ?? {}) as { urls?: string | string[]; instruction?: string; model?: string; use_google_search?: boolean; }; const urls = Array.isArray(rawUrls) ? rawUrls : typeof rawUrls === "string" ? [rawUrls] : []; if (urls.length === 0) { throw new Error("'urls' must be provided as a string or a non-empty array"); } if (urls.length > 20) { throw new Error("Maximum of 20 URLs supported"); } const text = await callGeminiUrlContext({ urls, instruction, model, useGoogleSearch: Boolean(use_google_search), }); return { content: [{ type: "text", text }] }; }
  • src/index.ts:168-203 (registration)
    Registration of the analyze_urls tool in the MCP tools list, including name, description, and detailed inputSchema.
    { name: "analyze_urls", description: "Analyze and summarize the content of given URLs using Google Gemini URL Context. Provide an optional instruction and model.", inputSchema: { type: "object", properties: { urls: { description: "One URL string or an array of URLs (max 20)", oneOf: [ { type: "string" }, { type: "array", items: { type: "string" }, minItems: 1, maxItems: 20, }, ], }, instruction: { type: "string", description: "Optional instruction or task description", }, model: { type: "string", description: "Gemini model id (e.g., gemini-2.5-flash)", }, use_google_search: { type: "boolean", description: "Enable grounding with Google Search (adds google_search tool alongside URL context)", }, }, required: ["urls"], }, },
  • TypeScript type definition matching the input schema for analyze_urls parameters.
    type AnalyzeUrlsParams = { urls: string[]; instruction?: string; model?: string; useGoogleSearch?: boolean; };

Other Tools

Related Tools

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/nanameru/url-context-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server