Skip to main content
Glama

DuckDB MCP Server

duckdb_visualization.xml5.05 kB
<duckdb_visualization> <metadata> <title>DuckDB Data Visualization Guidelines</title> <description>Guidelines and best practices for visualizing data from DuckDB queries</description> </metadata> <visualization_types> <type id="time_series"> <name>Time Series Charts</name> <description>Line charts showing data points over time, ideal for temporal trends.</description> <suitable_for> <data_type>Numeric values with timestamp/date columns</data_type> <analysis>Trends, patterns, seasonality, anomalies over time</analysis> </suitable_for> <query_pattern> <code> SELECT time_column::DATE as date, AVG(metric_column) as avg_value FROM 'data_source' WHERE time_column BETWEEN start_date AND end_date GROUP BY date ORDER BY date </code> </query_pattern> <best_practices> <practice>Consider appropriate time granularity (hour, day, month)</practice> <practice>Use date_trunc() for time bucketing</practice> <practice>Filter for relevant time periods</practice> </best_practices> </type> <type id="bar_chart"> <name>Bar Charts</name> <description>Visual comparison of categorical data using rectangular bars.</description> <suitable_for> <data_type>Categorical columns with associated numeric values</data_type> <analysis>Comparisons, rankings, distributions by category</analysis> </suitable_for> <query_pattern> <code> SELECT category_column, SUM(metric_column) as total_value FROM 'data_source' GROUP BY category_column ORDER BY total_value DESC LIMIT 10 </code> </query_pattern> <best_practices> <practice>Limit to top N categories to avoid cluttered visuals</practice> <practice>Consider horizontal bars for long category names</practice> <practice>Use appropriate aggregation (SUM, AVG, COUNT)</practice> </best_practices> </type> <type id="scatter_plot"> <name>Scatter Plots</name> <description>Shows the relationship between two numeric variables.</description> <suitable_for> <data_type>Two or more numeric columns</data_type> <analysis>Correlations, patterns, clusters, outliers</analysis> </suitable_for> <query_pattern> <code> SELECT numeric_column1, numeric_column2, optional_category_column FROM 'data_source' WHERE numeric_column1 IS NOT NULL AND numeric_column2 IS NOT NULL LIMIT 1000 </code> </query_pattern> <best_practices> <practice>Include color dimension for additional insights</practice> <practice>Consider adding trend lines</practice> <practice>Limit point count for performance</practice> </best_practices> </type> <type id="heatmap"> <name>Heatmaps</name> <description>Color-coded matrix representation of data values.</description> <suitable_for> <data_type>Two categorical dimensions with a numeric measure</data_type> <analysis>Patterns, concentrations, variations across categories</analysis> </suitable_for> <query_pattern> <code> SELECT category1, category2, COUNT(*) as frequency FROM 'data_source' GROUP BY category1, category2 ORDER BY category1, category2 </code> </query_pattern> <best_practices> <practice>Use appropriate color scale</practice> <practice>Consider log scale for skewed data</practice> <practice>Sort axes meaningfully</practice> </best_practices> </type> </visualization_types> <advanced_techniques> <technique id="combining_visualizations"> <name>Dashboard Composition</name> <description>Combining multiple visualization types for comprehensive insights.</description> <example> <steps> <step>Time series of overall metrics</step> <step>Bar chart of top categories</step> <step>Heatmap showing detailed breakdown</step> </steps> </example> </technique> <technique id="interactive_filtering"> <name>Interactive Filtering</name> <description>Enabling exploration through dynamic query modification.</description> <implementation> <approach>Generate parameterized queries that can be modified by user input</approach> </implementation> </technique> </advanced_techniques> </duckdb_visualization>

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/mustafahasankhan/duckdb-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server