Skip to main content
Glama

Vibe Preprocessing and Analysis MCP Server

by mudit14224

Vibe Preprocessing and Analysis MCP Server for CSV files

A powerful MCP (Model Control Protocol) server for preprocessing and analyzing CSV files. This server provides a suite of tools for data manipulation, visualization, and analysis through an intuitive interface.

Features

  • Data Loading and Management

    • Load CSV files from a specified working directory

    • Set and manage working directories

    • List files in the working directory

    • Save processed dataframes to new files

  • Data Preprocessing

    • Handle mixed data types in columns

    • Manage null values with various strategies:

      • Remove rows with nulls

      • Fill with mean/median/mode

      • Forward/backward fill

      • Fill with constant values

    • Drop and rename columns

    • Run custom dataframe editing code

    • Save processed data to new files

  • Data Analysis

    • Generate comprehensive data descriptions

    • Create correlation matrices with visualizations

    • Handle mixed data types in columns

    • Run custom analysis code

  • Data Visualization

    • Create various types of plots:

      • Line plots

      • Bar charts

      • Scatter plots

      • Histograms with KDE

      • Box plots

      • Violin plots

      • Pie charts

      • Count plots

      • Kernel Density Estimation plots

    • Custom graph generation through code

    • Save visualizations to the working directory

    • Run custom visualization code

Setup Instructions

Prerequisites

  • Python 3.x

  • uv (recommended package manager). I recommend using uv to manage the server.

Installation

  1. Add MCP and required dependencies:

uv add "mcp[cli]" uv add pandas matplotlib seaborn numpy
  1. Install the server in Claude Desktop:

mcp install server.py

Alternative Installation with pip

If you prefer using pip:

pip install "mcp[cli]" pandas matplotlib seaborn numpy

Usage

  1. Start the MCP server:

uv run mcp
  1. Test the server using MCP Inspector:

mcp dev server.py

You can install this server in Claude Desktop and interact with it right away by running:

mcp install server.py

Alternatively, you can test it with the MCP Inspector:

mcp dev server.py

Available Tools

Data Management

  • send_work_dir(): Retrieve the current working directory

  • set_work_dir(new_work_dir): Set a new working directory

  • list_work_dir_files(): List files in the current working directory

  • load_csv(filename): Load a CSV file into the system

  • save_global_df(filename): Save the current dataframe to a file

Data Preprocessing

  • handle_column_mixed_types(): Handle columns with mixed data types

  • handle_null_values(strategy, columns): Handle null values in the dataset with various strategies

  • drop_columns(columns): Remove specified columns

  • rename_columns(column_mapping): Rename columns in the dataframe

  • run_custom_df_edit_code(code): Execute custom dataframe manipulation code

Data Analysis

  • describe_df(): Generate a statistical summary of the dataframe

  • generate_correlation_matrix(): Create a correlation matrix with visualization

Data Visualization

  • plot_graph(graph_type, x_column, y_column, output_filename): Create various types of plots

    • Supported graph types: line, bar, scatter, hist, box, violin, pie, count, kde

  • run_custom_graph_code(code): Execute custom visualization code

Environment Variables

  • WORK_DIR: The working directory where files are read from and saved to

Error Handling

The server includes comprehensive error handling for:

  • Missing working directories

  • File not found errors

  • Data loading and processing errors

  • Invalid operations on empty dataframes

  • Mixed data type handling

  • Custom code execution errors

  • Invalid column names

  • Invalid graph types

  • Null value handling errors

Contributing

Feel free to submit issues and enhancement requests!

-
security - not tested
F
license - not found
-
quality - not tested

Related MCP Servers

  • A
    security
    A
    license
    A
    quality
    Enables autonomous data exploration on .csv-based datasets, providing intelligent insights with minimal effort.
    Last updated -
    2
    506
    MIT License
    • Apple
  • -
    security
    A
    license
    -
    quality
    Provides Excel file manipulation capabilities without requiring Microsoft Excel installation, enabling workbook creation, data manipulation, formatting, and advanced Excel features.
    Last updated -
    8
    MIT License
    • Linux
    • Apple
  • -
    security
    F
    license
    -
    quality
    Enables natural language analysis of Azure usage data from CSV files, providing cost summaries, visualizations, and insights about service and regional spending patterns.
    Last updated -
  • A
    security
    A
    license
    A
    quality
    Provides tools for analyzing project structures, searching through codebases, managing dependencies, and performing file operations with advanced filtering capabilities.
    Last updated -
    6
    31
    1
    MIT License

View all related MCP servers

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/mudit14224/Vibe-Data-Analysis'

If you have feedback or need assistance with the MCP directory API, please join our Discord server