Skip to main content
Glama
test_mip_solver.py1.3 kB
import math from crew_optimizer.schemas import Constraint, LPModel, LinearExpr, LinearTerm, SolveOptions, Variable from crew_optimizer.solvers.mip.branch_and_cut import solve_mip def make_mip() -> LPModel: return LPModel( name="binary", sense="max", objective=LinearExpr( terms=[LinearTerm(var="x", coef=1.0), LinearTerm(var="y", coef=1.0)], constant=0.0, ), variables=[ Variable(name="x", lb=0.0, ub=1.0, is_integer=True), Variable(name="y", lb=0.0, ub=1.0, is_integer=True), ], constraints=[ Constraint( name="limit", lhs=LinearExpr( terms=[LinearTerm(var="x", coef=1.0), LinearTerm(var="y", coef=1.0)], constant=0.0, ), cmp="<=", rhs=1.0, ) ], ) def test_mip_solver_integrality(): model = make_mip() solution = solve_mip(model, SolveOptions()) assert solution.status == "optimal" assert solution.x is not None total = solution.x["x"] + solution.x["y"] assert math.isclose(total, 1.0, abs_tol=1e-6) for value in solution.x.values(): assert math.isclose(value, round(value), abs_tol=1e-6)

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/mrugankpednekar/mcp-optimizer'

If you have feedback or need assistance with the MCP directory API, please join our Discord server