Skip to main content
Glama
test_lp_solver.py1.52 kB
import pytest from crew_optimizer.schemas import Constraint, LPModel, LinearExpr, LinearTerm, SolveOptions, Variable from crew_optimizer.solvers.lp.simplex import solve_lp def make_lp() -> LPModel: return LPModel( name="diet-toy", sense="min", objective=LinearExpr( terms=[LinearTerm(var="x", coef=3.0), LinearTerm(var="y", coef=2.0)], constant=0.0, ), variables=[ Variable(name="x", lb=0.0), Variable(name="y", lb=0.0), ], constraints=[ Constraint( name="c1", lhs=LinearExpr( terms=[LinearTerm(var="x", coef=1.0), LinearTerm(var="y", coef=2.0)], constant=0.0, ), cmp=">=", rhs=8.0, ), Constraint( name="c2", lhs=LinearExpr( terms=[LinearTerm(var="x", coef=3.0), LinearTerm(var="y", coef=1.0)], constant=0.0, ), cmp=">=", rhs=6.0, ), ], ) def test_lp_solver_optimal_solution(): model = make_lp() solution = solve_lp(model, SolveOptions()) assert solution.status == "optimal" assert solution.objective_value == pytest.approx(9.6, rel=1e-6) assert solution.x is not None assert solution.x["x"] == pytest.approx(0.8, rel=1e-6) assert solution.x["y"] == pytest.approx(3.6, rel=1e-6)

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/mrugankpednekar/mcp-optimizer'

If you have feedback or need assistance with the MCP directory API, please join our Discord server